-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
163 lines (128 loc) · 5.72 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Adapted from https://discuss.pytorch.org/t/unet-implementation/426
import torch
from torch import nn
import torch.nn.functional as F
import logging
class UNet(nn.Module):
def __init__(self, in_channels=1, depth=2, act='relu', wf=6,
padding=True, batch_norm=False, up_mode='upsample',
twohead=False, _log=logging.getLogger(), **kwargs):
"""
Implementation of
U-Net: Convolutional Networks for Biomedical Image Segmentation
(Ronneberger et al., 2015)
https://arxiv.org/abs/1505.04597
Using the default arguments will yield the exact version used
in the original paper
Args:
in_channels (int): number of input channels
n_classes (int): number of output channels
depth (int): depth of the network
wf (int): number of filters in the first layer is 2**wf
padding (bool): if True, apply padding such that the input shape
is the same as the output.
This may introduce artifacts
batch_norm (bool): Use BatchNorm after layers with an
activation function
up_mode (str): one of 'upconv' or 'upsample'.
'upconv' will use transposed convolutions for
learned upsampling.
'upsample' will use bilinear upsampling.
"""
super(UNet, self).__init__()
self.padding = padding
self.twohead = twohead
self.depth = depth
prev_channels = in_channels
self.down_path = nn.ModuleList()
for i in range(depth):
self.down_path.append(
UNetConvBlock(prev_channels, 2 ** (wf + i),
padding, batch_norm)
)
prev_channels = 2 ** (wf + i)
self.latent_signal = nn.Conv2d(prev_channels, prev_channels, kernel_size=1)
self.decoder_signal = UNetDecoder(depth, prev_channels, up_mode, padding, batch_norm, wf, 1)
if self.twohead:
self.latent_noise = nn.Conv2d(prev_channels, prev_channels, kernel_size=1)
self.decoder_noise = UNetDecoder(depth, prev_channels, up_mode, padding, batch_norm, wf, 1)
_log.info("Created a UNet with the following properties:\nDepth: {} Act: {} WF: {} BatchNorm: {} UpMode: {}".format(depth, act, wf, batch_norm, up_mode))
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0)
def forward(self, x):
blocks = []
for i, down in enumerate(self.down_path):
x = down(x)
if i != len(self.down_path) - 1:
blocks.append(x)
x = F.max_pool2d(x, 2)
ls = self.latent_signal(x)
signal = self.decoder_signal(ls, blocks)
out = signal
if self.twohead:
ln = self.latent_noise(x)
noise = self.decoder_noise(ln, blocks)
out = (signal, noise)
return out
class UNetDecoder(nn.Module):
def __init__(self, depth, prev_channels, up_mode, padding, batch_norm, wf, n_classes):
super(UNetDecoder, self).__init__()
self.up_path = nn.ModuleList()
for i in reversed(range(depth - 1)):
self.up_path.append(
UNetUpBlock(prev_channels, 2 ** (wf + i),
up_mode, padding, batch_norm)
)
prev_channels = 2 ** (wf + i)
self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1)
def forward(self, x, blocks):
for i, up in enumerate(self.up_path):
x = up(x, blocks[-i - 1])
out = self.last(x)
return out
class UNetConvBlock(nn.Module):
def __init__(self, in_size, out_size, padding, batch_norm):
super(UNetConvBlock, self).__init__()
block = []
block.append(nn.Conv2d(in_size, out_size,
kernel_size=3, padding=int(padding)))
block.append(nn.LeakyReLU())
if batch_norm:
block.append(nn.BatchNorm2d(out_size))
block.append(nn.Conv2d(out_size, out_size,
kernel_size=3, padding=int(padding)))
block.append(nn.LeakyReLU())
if batch_norm:
block.append(nn.BatchNorm2d(out_size))
self.block = nn.Sequential(*block)
def forward(self, x):
out = self.block(x)
return out
class UNetUpBlock(nn.Module):
def __init__(self, in_size, out_size, up_mode, padding, batch_norm):
super(UNetUpBlock, self).__init__()
if up_mode == 'upconv':
self.up = nn.ConvTranspose2d(
in_size, out_size, kernel_size=2, stride=2)
elif up_mode == 'upsample':
self.up = nn.Sequential(
nn.Upsample(mode='bilinear', scale_factor=2, align_corners=False),
nn.Conv2d(in_size, out_size, kernel_size=1),
)
self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm)
def center_crop(self, layer, target_size):
_, _, layer_height, layer_width = layer.size()
diff_y = (layer_height - target_size[0]) // 2
diff_x = (layer_width - target_size[1]) // 2
return layer[
:, :, diff_y: (diff_y + target_size[0]), diff_x: (diff_x + target_size[1])
]
def forward(self, x, bridge):
up = self.up(x)
crop1 = self.center_crop(bridge, up.shape[2:])
out = torch.cat([up, crop1], 1)
out = self.conv_block(out)
return out