-
Notifications
You must be signed in to change notification settings - Fork 508
/
Copy pathTrapping Rain Water.cpp
44 lines (34 loc) · 1.18 KB
/
Trapping Rain Water.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.
// Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
// Output: 6
// Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
// Example 2:
// Input: height = [4,2,0,3,2,5]
// Output: 9
// Constraints:
// n == height.length
// 1 <= n <= 2 * 104
// 0 <= height[i] <= 105
class Solution {
public:
int trap(vector<int>& height)
{
if(height.empty())
return 0;
int ans = 0;
int size = height.size();
vector<int> left_max(size), right_max(size);
left_max[0] = height[0];
for (int i = 1; i < size; i++) {
left_max[i] = max(height[i], left_max[i - 1]);
}
right_max[size - 1] = height[size - 1];
for (int i = size - 2; i >= 0; i--) {
right_max[i] = max(height[i], right_max[i + 1]);
}
for (int i = 1; i < size - 1; i++) {
ans += min(left_max[i], right_max[i]) - height[i];
}
return ans;
}
};