forked from ConvLab/ConvLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
103 lines (89 loc) · 3.66 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Modified by Microsoft Corporation.
# Licensed under the MIT license.
'''
Specify what to run in `config/experiments.json`
Then run `python run_lab.py` or `yarn start`
'''
# from convlab.experiment import analysis, retro_analysis
# from convlab.experiment.monitor import InfoSpace
import os
import sys
import pydash as ps
import torch
import torch.multiprocessing as mp
# import os
# # NOTE increase if needed. Pytorch thread overusage https://github.com/pytorch/pytorch/issues/975
# os.environ['OMP_NUM_THREADS'] = '1'
from convlab import EVAL_MODES, TRAIN_MODES
from convlab.experiment.control import Session, Trial, Experiment
from convlab.lib import logger, util
from convlab.spec import spec_util
debug_modules = [
# 'algorithm',
]
debug_level = 'DEBUG'
logger.toggle_debug(debug_modules, debug_level)
logger = logger.get_logger(__name__)
def run_spec(spec, lab_mode):
'''Run a spec in lab_mode'''
os.environ['lab_mode'] = lab_mode
if lab_mode in TRAIN_MODES:
spec_util.save(spec) # first save the new spec
if lab_mode == 'dev':
spec = spec_util.override_dev_spec(spec)
if lab_mode == 'search':
spec_util.tick(spec, 'experiment')
Experiment(spec).run()
else:
spec_util.tick(spec, 'trial')
Trial(spec).run()
elif lab_mode in EVAL_MODES:
spec_util.tick(spec, 'session')
spec = spec_util.override_eval_spec(spec)
Session(spec).run()
else:
print("%s".format(EVAL_MODES))
raise ValueError(f'Unrecognizable lab_mode not of {TRAIN_MODES} or {EVAL_MODES}')
def read_spec_and_run(spec_file, spec_name, lab_mode):
'''Read a spec and run it in lab mode'''
logger.info(f'Running lab spec_file:{spec_file} spec_name:{spec_name} in mode:{lab_mode}')
if lab_mode in TRAIN_MODES:
spec = spec_util.get(spec_file, spec_name)
else: # eval mode
if '@' in lab_mode:
lab_mode, prename = lab_mode.split('@')
spec = spec_util.get_eval_spec(spec_file, spec_name, prename)
else:
spec = spec_util.get(spec_file, spec_name)
if 'spec_params' not in spec:
run_spec(spec, lab_mode)
else: # spec is parametrized; run them in parallel
param_specs = spec_util.get_param_specs(spec)
num_pro = spec['meta']['param_spec_process']
# can't use Pool since it cannot spawn nested Process, which is needed for VecEnv and parallel sessions. So these will run and wait by chunks
workers = [mp.Process(target=run_spec, args=(spec, lab_mode)) for spec in param_specs]
for chunk_w in ps.chunk(workers, num_pro):
for w in chunk_w:
w.start()
for w in chunk_w:
w.join()
def main():
'''Main method to run jobs from scheduler or from a spec directly'''
args = sys.argv[1:]
if len(args) <= 1: # use scheduler
job_file = args[0] if len(args) == 1 else 'job/experiments.json'
for spec_file, spec_and_mode in util.read(job_file).items():
for spec_name, lab_mode in spec_and_mode.items():
read_spec_and_run(spec_file, spec_name, lab_mode)
else: # run single spec
assert len(args) == 3, f'To use sys args, specify spec_file, spec_name, lab_mode'
read_spec_and_run(*args)
if __name__ == '__main__':
torch.set_num_threads(1) # prevent multithread slowdown
mp.set_start_method('spawn', force=True) # for distributed pytorch to work
if sys.platform == 'darwin':
# avoid xvfb on MacOS: https://github.com/nipy/nipype/issues/1400
main()
else:
#with Xvfb() as xvfb: # safety context for headless machines
main()