-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.qmd
841 lines (521 loc) · 23.6 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
---
title: "Data Innovation"
subtitle: "Streamlining Broadband Insights with `cori.data.fcc`"
author: "Olivier Leroy"
date: "October 20 2024"
institute: "Center On Rural Innovation"
fontsize: 20pt
favicon: assets/images/Logo-Mark_Black.png
format:
revealjs:
theme: src/custom_cori.scss
logo: assets/images/CORI_Logo.png
css: assets/fonts.css
footnotes-hover:: true
from: markdown+emoji
editor: visual
resources: assets
---
# How are you getting your data? Are you downloading it? Is it hard?
## Overview
I. <span style="font-size: 125%;">**Introduction**</span> ![](assets/images/overview.png){fig-align="right"}
II. <span style="font-size: 125%;">**Research using the latest broadband service data**</span>
III. <span style="font-size: 125%;">**Challenges to using the latest broadband service data**</span>
<br />_i.e., More data more problems_
IV. <span style="font-size: 125%;">**Our broadband data package: `cori.data.fcc`**</span>
<br />_i.e., How we accelerate innovation by making this complex,_
<br />_ever-changing broadband data more accessible and usable for research_
## :wave: Hi, I'm Olivier, a Senior Data Engineer at CORI
<br />
> Meet the people the people who can coax treasure out of messy, unstructured, data[^hbr]
<p> </p><br />
- Working with source data—often referred to as "big", "messy", "unstructured" data—is a growing challenge
[^hbr]: [Harvard Business Review](https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century)
- Socials: [LinkedIn](https://www.linkedin.com/in/olivier-leroy-r/) | [Mastodon](https://fosstodon.org/@defuneste) | [Personal Website](https://branchtwigleaf.com/about.html)
::: {.notes}
I find ways to add structure and meaning to data so that it can effectively inform the work of the organization’s analysts, researchers and community managers.
:::
## CORI's Mission
![](assets/images/cori-mission-slide-8.png)
## What Broadband means to Rural America
::::{.columns}
:::{.column width="54%"}
<p> </p><br />
We believe that **small towns** are home to **big ideas** — and combining new models of economic development with strategic investments in **new infrastructure** can **empower rural communities** across the U.S. to participate in and benefit from the nation's growing **tech economy**.
:::
:::{.column width="44%"}
![](assets/images/Shaniqua%20CorleyMoore.jpg)
:::
::::
### Broadband knowledge is an important part of our work
# Out of necessity we had to become experts in broadband data
## We’ve packaged our expertise into tools…
:::: {.columns}
::: {.column width="54%"}
[Rural Broadband Mapping Tool](https://rural-broadband-map.ruralinnovation.us/){.external target="_blank"}
![](assets/images/small_bead_tool.gif)
![](assets/images/bead_qr.svg){fig-align="center"}
:::
::: {.column width="44%"}
[Broadband Climate Risk Mitigation Tool](https://broadband-risk.ruralinnovation.us/){.external target="_blank"}
![](assets/images/bb_climate_2.png)
![](assets/images/bb_risk.svg){fig-align="center"}
:::
::::
::: {.notes}
- we are working with these data at the scale of the US (including territories) at the granularity of census blocks
- we are enhancing this data with other sources ACS, FEMA and more
- public facing aps (“people are going to check their house”)
:::
## … and research
<!--
::::{.columns }
::: {.column width="50%" .fragment}
![](assets/images/ideation.png)
:::
::: {.column width="50%" .fragment}
![](assets/images/report_slide.png){width="50%"}
![](assets/images/calixlgo.png)
:::
::::
::: {.notes}
from ideation to report
:::
## Broadband research is expanding, going beyond traditional economic analysis
-->
:::: {.columns}
::: {.column width="50%"}
- **[The Fiber Broadband Housing Premium Across Three US States](https://www.tandfonline.com/doi/full/10.1080/21681376.2024.2305951#abstract)**
<br />Whitacre, B. (2024). The fiber broadband housing premium across three US States. Regional Studies, Regional Science, 11(1), 38–62. [https://doi.org/10.1080/21681376.2024.2305951](https://www.tandfonline.com/doi/full/10.1080/21681376.2024.2305951#abstract)
- **[Beyond connectivity: The role of broadband in rural economic growth and resilience](https://ruralinnovation.us/resources/reports/report-the-role-of-broadband-in-rural-economic-growth-and-resilience/)**
<br />Weinstein, A., Erouart, M., & Dewbury, A. (2024) Beyond Connectivity: The role of broadband in rural economic growth and resilience. Center on Rural Innovation. [https://ruralinnovation.us/resources/reports/report-the-role-of-broadband-in-rural-economic-growth-and-resilience/](https://ruralinnovation.us/resources/reports/report-the-role-of-broadband-in-rural-economic-growth-and-resilience/)
:::
::: {.column width="50%"}
![](assets/images/presenting_beyond_connectivity.png){width="75%"}
:::
::::
## Broadband research, not only about housing market
::::{.columns}
::: {.column width="70%"}
![](assets/images/rural_broadband_adoptions_vs_estab_pct_change.png)
:::
::: {.column width="30%"}
<br />
The growth rate of **new businesses** is **213%** higher for rural communities with **high broadband utilization**
:::
::::
<p style="padding-right: 10%; text-align: right">Weinstein, A., Erouart, M., & Dewbury, A. (2024)</p>
:::{.notes}
- Broadband access can have a transformative impact on economic growth and resilience,
<br />but our research found that _access alone is insufficient_
- Broadband utilization is a key metric, encompassing both adoption rates and effective leveraging of infrastructure
:::
# Broadband research is evolving<br >... and so is the data!
## Broadband data is more detailed than ever before but at a cost
:::: {.columns}
::: {.column width="60%" .fragment}
| | [Form 477](https://www.fcc.gov/economics-analytics/industry-analysis-division/form-477-resources) | [National Broadband Map](https://broadbandmap.fcc.gov/home){white-space="nowrap"} |
|----------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US Census Boundaries | 2010 | 2020 |
| Granularity | Census blocks | [Locations](https://broadbandmap.fcc.gov/location-summary/fixed?version=dec2022&location_id=1350199199&addr1=390+MORGAN+ST&addr2=OBERLIN%2C+OH+44074&zoom=15.00&vlon=-82.231744&vlat=41.287448&br=r&speed=25_3&tech=1_2_3_4_5_6_7_8) |
| Timeframe | 2014-2021 | 2022 - *Ongoing* |
| Releases | **twice a year** | **twice a year** |
| Records | **416,447,807** | **3,488,191,994** |
| Size | **400MB/year** | **22GB/year** |
:::
::: {.column width="40%" .fragment}
<p> </p><br />
- Data has grown **50 fold** from one data product to the next
- Require **domain knowledge**
- **Evolving** data landscape
:::
::::
::: {.notes}
- Agency in charge of regulating "everything" communications
These datasets are voluminous, involving hundreds of files, especially for the Form 477 data which covers ISP data since 2014
increase 50th fold
FCC releases lack "guard rails" in terms of data quality and consistency. In addition to publishing very meager change logs (based on CostQuest’s pre-release/proprietary updates), issues include multiple encodings, erroneous values, and limited quality control
Analysis of the National Broadband Map (NBM) data reveals inconsistencies and potential errors in key identifiers like the FCC Registration Number (FRN), Provider ID, and Brand Name:
* Different FRNs and Provider IDs are used for the same ISP ("EATEL Corp.")
The same Provider ID is associated with different FRNs (Acentek).
Multiple FRNs exist for well-known ISPs like Windstream and AT&T.
:::
## How you would use the FCC's data/platform…
:::: {.columns}
::: {.column width="50%"}
<p> </p><br />
![](assets/manual_fcc.mov)
:::
::: {.column width="50%"}
<p> </p><br />
- :repeat: **Repeat** for every State (56)
- :repeat: **Repeat** for every version (??)
- :red_circle: **Error** prone (500 hundred clicks)
:::
::::
## FCC data does not meet the growing needs of researchers
<p> </p><br />
- <span style="font-size: 125%;">I wish I didn’t have to manually download FCC data</span>![](assets/images/data_center.png){fig-align="right" width="40%"}
- <span style="font-size: 125%;">I wish I could share my analysis (and code) with colleagues</span>
- <span style="font-size: 125%;">I wish I could easily perform quality checks on the raw FCC data</span>
- <span style="font-size: 125%;"> **There’s a steep learning curve in working with this data … I wish I had more time to focus on interesting research and analysis** </span>
# `cori.data.fcc`
:::{.notes}
CORI has developed a product to address this problem by packaging data as code…
:::
## … data packaged as code
:::{.incremental}
1. **Address Data Challenges**<br />
- Data is packaged as code to simplify data access, reduce errors, and promote collaboration.
- Low-level data transformations are codified: easy for others to reproduce.
2. **Accelerate Innovation**<br />
- Broadband data is packaged so that researchers can focus on analysis and insights, not data wrangling.
3. **Unlock Deeper Insights Faster**<br />
- `cori.data.fcc` provides fast access to granular details, essential for understanding broadband challenges across multiple geographic scales.
:::
:::{.fragment}
> [packages can act like team members such as the **IT Guy**, **Analyst**, Tech Lead, or Project Manager](https://www.emilyriederer.com/post/team-of-packages/#collaboration).
:::
::: {.notes}
promote collaboration: open source, more value from our codes, start discussion with upstream, USAC
:::
## 440 files in 12 lines of codes
:::: {.columns}
::: {.column width="50%"}
::: {.panel-tabset}
### Visual
![](assets/dl_nbm_smaller.mov)
### Code
```{r}
#| label: example_dl_nbm
#| eval: false
#| echo: true
library(cori.data.fcc)
dir <- "data_swamp/nbm/"
get_nbm_release()
nbm_data <- get_nbm_available()
system(sprintf("mkdir -p %s", dir))
dl_nbm(
path_to_dl = "data_swamp/nbm",
release_date = "June 30, 2023",
data_type = "Fixed Broadband",
data_category = "Nationwide",
)
# part to check if dl was successful
num_files <- get_nbm_available() |>
dplyr::filter(release == "June 30, 2023" &
data_type == "Fixed Broadband" &
data_category == "Nationwide") |>
nrow()
files_dl <- length(list.files(dir,
pattern = "*.zip"))
identical(num_files, files_dl)
# TRUE
```
:::
:::
::: {.column width="50%"}
<p> </p><br />
- Created **quality checks** to reduce errors
- Complexity is handled in our **upstream** process and **abstracted** so that users can focus on what brings **value**!
- Added DuckDB
:::
::::
::: {.notes}
DuckDB unlocked in-process analytics, so access to a database management system/server is no longer required in order to explore and use the data
:::
## How to use the package > Choose your own adventure!
:::{.incremental}
- _Broadband data at the census block (or tract, county, etc.) level is perfect for my research_: <span> </span> <span> </span> <span> </span> <span> </span> <span> </span> <span> </span> <span> </span> <span> </span>
<br />**Download the transformed data for NBM from CORI ([ISP](https://ruralinnovation.github.io/cori.data.fcc/reference/get_frn_nbm_bl.html) / [County](https://ruralinnovation.github.io/cori.data.fcc/reference/get_county_nbm_raw.html))**
- _I need source data but working with hundreds of CSV is not for me_:
<br />**Download raw data as tables from CORI ([NBM](https://ruralinnovation.github.io/cori.data.fcc/reference/get_county_nbm_raw.html) / [Form 477](https://ruralinnovation.github.io/cori.data.fcc/reference/get_f477.html))**
- _I need to inspect the source (raw) data_:
<br />**Download raw data [files directly from the FCC](https://ruralinnovation.github.io/cori.data.fcc/articles/Check_and_download_NBM_data.html)**
- The guides linked above can help you with each step!
:::
# Examples use cases
## Unlock analysis with 3 repeatable lines of codes
:::: {.columns}
::: {.column width="60%"}
::: {.panel-tabset}
### Visual
![](assets/images/nek_bb_service.png)
### Code
```{r service-nek}
#| echo: true
#| eval: false
#| code-line-numbers: "6,7,8"
library(cori.data.fcc); library(dplyr); library(sf); library(tigris)
library(ggplot2); library(cori.charts); library(basemapR)
cori.charts::load_fonts()
caledonia_co_nbm <- cori.data.fcc::get_nbm_bl(geoid_co = "50005")
essex_co_nbm <- cori.data.fcc::get_nbm_bl(geoid_co = "50009")
orleans_co_nbm <- cori.data.fcc::get_nbm_bl(geoid_co = "50019")
nek_nbm <- dplyr::bind_rows(caledonia_co_nbm, essex_co_nbm, orleans_co_nbm)
# tigris to get places and block
vt_blocks <- tigris::blocks("VT", progress_bar = FALSE)
vt_places <- tigris::places(state = "VT", progress_bar = FALSE)
# wrangling
nek_bb_blocks <- inner_join(
vt_blocks,
nek_nbm,
by = c("GEOID20" = "geoid_bl")
) |>
mutate(
pct_100_20 = cnt_100_20 / cnt_total_locations,
pct_fiber = cnt_fiber_locations / cnt_total_locations
)
# Get major NEK Place centroids for map labeling
vt_places_centroids <- vt_places[lengths(sf::st_intersects(vt_places, nek_bb_blocks)) > 0, ] |>
st_centroid()
# Map
bbox <- sf::st_bbox(nek_bb_blocks) |>
cori.charts::fit_bbox_to_aspect_ratio(target_aspect_ratio = 2)
fig <- ggplot(data = nek_bb_blocks) +
base_map(
bbox,
increase_zoom = 3,
basemap = 'voyager'
) +
geom_sf(aes(fill = pct_100_20), color = "dimgray", linewidth = 0.1, alpha = 0.9) +
scale_fill_cori(
discrete = FALSE,
palette = "ctg2pu",
labels = scales::label_percent(),
reverse = T
) +
geom_sf_label(data = vt_places_centroids, aes(label = NAME), size = 2, color = "black", family = "Lato", fontface = "bold") +
coord_sf(
expand = TRUE,
xlim = c(bbox['xmin'], bbox['xmax']),
ylim = c(bbox['ymin'], bbox['ymax'])
) +
theme_cori_map() +
theme(
legend.key.width = unit(50, "pt")
) +
labs(
title = "Broadband service in the Northeast Kingdom",
subtitle = "Percent of locations with access to 100/20 Mbps service by census block",
caption = "Data source: 2023 FCC National Broadband Map\nMap source: © OpenStreetMap contributors © CARTO",
x = NULL,
y = NULL
)
```
:::
:::
::: {.column width="40%"}
<p> </p><br />
- **3 lines** of codes to get the data…
- … avoiding thousands of lines of code or clicks
- Use census blocks: **easy match with other data sources** (ACS, BEA, etc ..)
:::
::::
## Dive deeper, faster!
:::: {.columns}
::: {.column width="60%"}
::: {.panel-tabset}
### Visual
![](assets/images/nek_fiber_service.png)
### Code
```{r fiber-nek}
#| echo: true
#| eval: false
fig <- ggplot(data = nek_bb_blocks) +
base_map(
bbox,
increase_zoom = 3,
basemap = 'voyager'
) +
geom_sf(aes(fill = pct_fiber), color = "dimgray", linewidth = 0.1, alpha = 0.6) +
scale_fill_cori(
discrete = FALSE,
palette = "ctg2pu",
labels = scales::label_percent(),
reverse = T
) +
geom_sf_label(data = vt_places_centroids, aes(label = NAME), size = 2, color = "black", family = "Lato", fontface = "bold") +
coord_sf(
expand = TRUE,
xlim = c(bbox['xmin'], bbox['xmax']),
ylim = c(bbox['ymin'], bbox['ymax'])
) +
theme_cori_map() +
theme(
legend.key.width = unit(50, "pt"),
) +
labs(
title = "Fiber access in the Northeast Kingdom",
subtitle = "Percent of locations with access to fiber by census block",
caption = "Data source: 2023 FCC National Broadband Map\nMap source: © OpenStreetMap contributors © CARTO",
x = NULL,
y = NULL
)
```
:::
:::
::: {.column width="40%"}
<p> </p><br />
- From a **simple analysis**: good on main street, bad further away
- To a **deeper** analysis:
* Only 11.5% of locations have fiber access in the Northeast Kingdom
* 6/25 ISP are providing Fiber
* We see that NEK broadband provides the best (most inclusive) coverage in the area. This insight relates to our recent broadband research
:::
::::
## cori.data.fcc supports spatial and graph data at multiple scales
:::: {.columns}
::: {.column width="60%"}
::: {.panel-tabset}
### Visual
```{r display_graph}
#| echo: false
#| eval: true
library(igraph)
library(crosstalk);library(DT);library(threejs)
oh_graph <- readRDS("data//oh_graph.rds")
draw_me_a_graph <- function(x, ...) {
threejs::graphjs(x,
vertex.label = V(x)$provider_name,
vertex.color = rep(2, vcount(x)),
vertex.size = .1,
edge.color = "grey",
edge.width = 3, ...)
}
g <- draw_me_a_graph(oh_graph, brush=TRUE)
points3d(g, vertices(g), color="black", pch=V(oh_graph)$provider_name, size=1.5)
```
### Code
```{r}
#| echo: TRUE
#| eval: FALSE
#| code-line-numbers: "8,46"
library(tigris);library(cori.data.fcc);library(igraph);library(dplyr)
library(crosstalk);library(DT);library(threejs)
oh <- tigris::counties(state = "39") # tigris is a great example of data as code
talk_to_me <- function(x) {
message(sprintf("Love Ohio: %s", x))
cori.data.fcc::get_nbm_bl(x)
}
oh_nbm <- lapply(oh$GEOID, talk_to_me) |> dplyr::bind_rows()
oh2_nbm <- oh_nbm[!is.na(oh_nbm$combo_frn), ]
od_me <- function(x) {
temp <- oh2_nbm[x, "array_frn"][[1]]
geoid_bl <- oh2_nbm[x, "geoid_bl"]
if (length(temp) == 1L)
{
return(data.frame(V1 = temp, V2 = NA, geoid_bl = geoid_bl))
}
bob <- as.data.frame(t(combn(temp, 2)))
bob$geoid_bl <- geoid_bl
return(bob)
}
od <- lapply(1:nrow(oh2_nbm), od_me) |> dplyr::bind_rows()
od <- od[!is.na(od$V2),]
bob <- rbind(data.frame(frn = od$V1, geoid_bl = od$geoid_bl),
data.frame(frn = od$V2, geoid_bl = od$geoid_bl))
cnt_bl <- summarise(bob, cnt_bl = n_distinct(geoid_bl), cnt_rel = n(), .by = frn)
od <- od[!is.na(od$V2),]
od$combo <- paste(od$V1, od$V2, sep = " - ")
od$count <- 1
rel <- od |> dplyr::summarize(n = sum(count), .by = combo)
give_me_from <- function(x) unlist(strsplit(x, " - "))[1]
give_me_to <- function(x) unlist(strsplit(x, " - "))[2]
rel$from <- sapply(rel$combo , give_me_from)
rel$to <- sapply(rel$combo, give_me_to)
fcc_slim <- cori.data.fcc::fcc_provider[, c("frn", "provider_name")]
frn <- data.frame( frn = unique(c(rel$from, rel$to)))
frn <- merge(frn, fcc_slim, by.x = "frn", by.y = "frn")
frn <- merge(frn, cnt_bl, by.x = "frn", by.y = "frn")
oh_graph <- graph_from_data_frame(rel[,c("from", "to")], directed = FALSE, vertices = frn)
oh_graph <- graph_from_data_frame(rel[,c("from", "to")], directed = FALSE, vertices = frn)
draw_me_a_graph <- function(x, ...) {
threejs::graphjs(x,
vertex.label = V(x)$provider_name,
vertex.color = rep(2, vcount(x)),
vertex.size = .1,
edge.color = "grey",
edge.width = 3, ...)
}
g <- draw_me_a_graph(oh_graph, brush=TRUE)
points3d(g, vertices(g), color="black", pch=V(oh_graph)$provider_name, size=1.5)
```
:::
:::
::: {.column width="40%"}
<p> </p><br />
#### Mapping the ISP market in Ohio?
- 1321 ISP operating in Ohio
- How to interpret:
* Providers competing in competitive markets are at the center
* Providers with few competitors are on the edges
- This type of analysis may be helpful in telling a story about ISP speeds and services, and ultimately general service quality.
:::
::::
## How to get the package
:::: {.columns}
::: {.column width="50%"}
0. The source code is hosted on [GitHub](https://github.com/ruralinnovation/cori.data.fcc) (Version control)
1. You need the R package [{remotes}](https://remotes.r-lib.org/).
```{r}
#| eval: false
#| label: install-package
#| echo: true
install.packages("remotes")
remotes::install_github("ruralinnovation/cori.data.fcc")
```
2. Load it!
```{r}
#| echo: true
library(cori.data.fcc)
```
3. :construction: Check the version! :construction:
```{r}
#| label: version-package
#| echo: true
packageVersion("cori.data.fcc")
```
### Open source supported by CORI, welcome any collaborations!
:::
::: {.column width="50%"}
<br />
```{=html}
<iframe width="600" height="600" src="https://ruralinnovation.github.io/cori.data.fcc/" title="cori.data.fcc"></iframe>
```
:::
::::
# Summary
## Our response to the changing broadband research landscape
::::{.columns}
::: {.column width="50%"}
<p> </p><br />
- We hope to **reduce the entry costs** associated with broadband research by making this a publically available product.
- We’ve **packaged the data (and expertise)** to add an **extra “team member”** to your research team
- And in return we hope to:
* **Support** the expansion of exciting broadband research, positively impacting rural communities.
* Increase the visibility and accountability of FCC products.
* Increase awareness of the **important role broadband plays in rural areas**.
:::
::: {.column width="50%"}
<br />
![](assets/images/rural_nonrural_broadband_gap.png)
:::
::::
## Contacts Us:
::::{.columns}
:::{.column width="50%"}
Website: [https://ruralinnovation.us](https://ruralinnovation.us)
[LinkedIn](https://www.linkedin.com/company/11099658) | [Twitter](https://twitter.com/Ruralinno) | [Facebook](https://www.facebook.com/RuralInno/) | [Instagram](https://www.instagram.com/ruralinno/) | [YouTube](https://www.youtube.com/channel/UCyqbtSrv4Nad9vVv4dQptcA)
![](assets/images/10%20(1).png)
:::
:::{.column width="50%"}
- Built with R and [cori.data.fcc](https://ruralinnovation.github.io/cori.data.fcc/){.external target="_blank"}
- Created by [Quarto](https://quarto.org/) (format: revealjs)
- Hosted and deployed on [GitHub](https://github.com/ruralinnovation/conf_URISA_2023)<br />
[https://ruralinnovation.github.io/prez_auber_2024/](https://ruralinnovation.github.io/prez_auber_2024/#/title-slide){.external target="_blank"}
<br />
![](assets/images/qr.svg){height="300" fig-align="left"}
:::
::::
# Thank you!