forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_optimization.html
507 lines (466 loc) · 14.3 KB
/
test_optimization.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
<html>
<head>
<title>
TEST_OPTIMIZATION - Test Functions for Optimization
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
<p>
<b>TEST_OPTIMIZATION</b> <br> Test Functions for Optimization
</h1>
<hr>
<p>
<b>TEST_OPTIMIZATION</b>
is a C++ library which
defines test problems for the scalar function optimization problem.
</p>
<p>
The scalar function optimization problem is to find a value for the
M-dimensional vector X which minimizes the value of the given scalar
function F(X).
</p>
<p>
A special feature of this library is that all the functions can be
defined for any dimension 1 <= M.
</p>
<p>
The functions defined include:
<ol>
<li>
The sphere model;
</li>
<li>
The axis-parallel hyper-ellipsoid function;
</li>
<li>
The rotated hyper-ellipsoid function;
</li>
<li>
Rosenbrock's valley;
</li>
<li>
Rastrigin's function;
</li>
<li>
Schwefel's function;
</li>
<li>
Griewank's function;
</li>
<li>
The power sum function;
</li>
<li>
Ackley's function;
</li>
<li>
Michalewicz's function;
</li>
<li>
The drop wave function;
</li>
<li>
The deceptive function;
</li>
</ol>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TEST_OPTIMIZATION</b> is available in
<a href = "../../cpp_src/test_optimization/test_optimization.html">a C++ version</a> and
<a href = "../../f77_src/test_optimization/test_optimization.html">a FORTRAN77 version</a> and
<a href = "../../f_src/test_optimization/test_optimization.html">a FORTRAN90 version</a> and
<a href = "../../m_src/test_optimization/test_optimization.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/asa047/asa047.html">
ASA047</a>,
a C++ library which
minimizes a scalar function of several variables using the Nelder-Mead algorithm.
</p>
<p>
<a href = "../../cpp_src/brent/brent.html">
BRENT</a>,
a C++ library which
contains Richard Brent's routines for finding the zero, local minimizer,
or global minimizer of a scalar function of a scalar argument, without
the use of derivative information.
</p>
<p>
<a href = "../../cpp_src/compass_search/compass_search.html">
COMPASS_SEARCH</a>,
a C++ library which
seeks the minimizer of a scalar function of several variables
using compass search, a direct search algorithm that does not use derivatives.
</p>
<p>
<a href = "../../f_src/dqed/dqed.html">
DQED</a>,
a FORTRAN90 library which
solves constrained least squares problems.
</p>
<p>
<a href = "../../m_src/entrust/entrust.html">
ENTRUST</a>,
a MATLAB program which
minimizes a scalar function of several variables using trust region methods,
by Jeff Borggaard and Gene Cliff.
</p>
<p>
<a href = "../../f_src/minpack/minpack.html">
MINPACK</a>,
a FORTRAN90 library which
carries out the least squares minimization of the residual
of a set of linear or nonlinear equations.
</p>
<p>
<a href = "../../m_src/nelder_mead/nelder_mead.html">
NELDER_MEAD</a>,
a MATLAB program which
minimizes a scalar function of several variables using the Nelder-Mead algorithm.
</p>
<p>
<a href = "../../f_src/nl2sol/nl2sol.html">
NL2SOL</a>,
a FORTRAN90 library which
implements an adaptive nonlinear least-squares algorithm.
</p>
<p>
<a href = "../../f_src/praxis/praxis.html">
PRAXIS</a>,
a FORTRAN90 library which
minimizes a scalar function of several variables.
</p>
<p>
<a href = "../../f_src/test_opt/test_opt.html">
TEST_OPT</a>,
a FORTRAN90 library which
defines a number of problems for the scalar optimization problem.
</p>
<p>
<a href = "../../cpp_src/test_opt_con/test_opt_con.html">
TEST_OPT_CON</a>,
a C++ library which
defines test problems for the minimization of a scalar function
of several variables, with the search constrained to lie within a specified hyper-rectangle.
</p>
<p>
<a href = "../../f_src/toms611/toms611.html">
TOMS611</a>,
a FORTRAN90 library which
minimizes a scalar functional of multiple variables.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Marcin Molga, Czeslaw Smutnicki,<br>
Test functions for optimization needs.
</li>
<li>
David Ackley,<br>
A connectionist machine for genetic hillclimbing,<br>
Springer, 1987,<br>
ISBN13: 978-0898382365,<br>
LC: Q336.A25.
</li>
<li>
Hugues Bersini, Marco Dorigo, Stefan Langerman, Gregory Seront, Luca Gambardella,<br>
Results of the first international contest on evolutionary optimisation,<br>
In Proceedings of 1996 IEEE International Conference on Evolutionary Computation,<br>
IEEE Press, pages 611-615, 1996.
</li>
<li>
Laurence Dixon, Gabor Szego,<br>
The optimization problem: An introduction,<br>
in Towards Global Optimisation,<br>
edited by Laurence Dixon, Gabor Szego,<br>
North-Holland, 1975,<br>
ISBN: 0444109552,<br>
LC: QA402.5.T7.
</li>
<li>
Zbigniew Michalewicz,<br>
Genetic Algorithms + Data Structures = Evolution Programs,<br>
Third Edition,<br>
Springer, 1996,<br>
ISBN: 3-540-60676-9,<br>
LC: QA76.618.M53.
</li>
<li>
Leonard Rastrigin,<br>
Extremal control systems,<br>
in Theoretical Foundations of Engineering Cybernetics Series,<br>
Moscow: Nauka, Russian, 1974.
</li>
<li>
Howard Rosenbrock,<br>
An Automatic Method for Finding the Greatest or Least Value of a Function,<br>
Computer Journal,<br>
Volume 3, 1960, pages 175-184.
</li>
<li>
Hans-Paul Schwefel,<br>
Numerical optimization of computer models,<br>
Wiley, 1981,<br>
ISBN13: 978-0471099888,<br>
LC: QA402.5.S3813.
</li>
<li>
Bruno Shubert,<br>
A sequential method seeking the global maximum of a function,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 9, pages 379-388, 1972.
</li>
<li>
Aimo Toern, Antanas Zilinskas,<br>
Global Optimization,<br>
Lecture Notes in Computer Science, Number 350,<br>
Springer, 1989,<br>
ISBN13: 978-0387508719,<br>
LC: QA402.T685
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "test_optimization.cpp">test_optimization.cpp</a>, the source code.
</li>
<li>
<a href = "test_optimization.hpp">test_optimization.hpp</a>, the include file.
</li>
<li>
<a href = "test_optimization.sh">test_optimization.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "test_optimization_prb.cpp">test_optimization_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "test_optimization_prb.sh">test_optimization_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "test_optimization_prb_output.txt">test_optimization_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>P00_AB</b> evaluates the limits of the optimization region for any problem.
</li>
<li>
<b>P00_COMPASS_SEARCH</b> carries out a direct search minimization algorithm.
</li>
<li>
<b>P00_F</b> evaluates the objective function for any problem.
</li>
<li>
<b>P00_PROBLEM_NUM</b> returns the number of problems available.
</li>
<li>
<b>P00_SOL</b> returns the solution for any problem.
</li>
<li>
<b>P00_TITLE</b> returns a title for any problem.
</li>
<li>
<b>P01_AB</b> evaluates the limits of the optimization region for problem 01.
</li>
<li>
<b>P01_F</b> evaluates the objective function for problem 01.
</li>
<li>
<b>P01_SOL</b> returns the solution for problem 01.
</li>
<li>
<b>P01_TITLE</b> returns a title for problem 01.
</li>
<li>
<b>P02_AB</b> evaluates the limits of the optimization region for problem 02.
</li>
<li>
<b>P02_F</b> evaluates the objective function for problem 02.
</li>
<li>
<b>P02_SOL</b> returns the solution for problem 02.
</li>
<li>
<b>P02_TITLE</b> returns a title for problem 02.
</li>
<li>
<b>P03_AB</b> evaluates the limits of the optimization region for problem 03.
</li>
<li>
<b>P03_F</b> evaluates the objective function for problem 03.
</li>
<li>
<b>P03_SOL</b> returns the solution for problem 03.
</li>
<li>
<b>P03_TITLE</b> returns a title for problem 03.
</li>
<li>
<b>P04_AB</b> evaluates the limits of the optimization region for problem 04.
</li>
<li>
<b>P04_F</b> evaluates the objective function for problem 04.
</li>
<li>
<b>P04_SOL</b> returns the solution for problem 04.
</li>
<li>
<b>P04_TITLE</b> returns a title for problem 04.
</li>
<li>
<b>P05_AB</b> evaluates the limits of the optimization region for problem 05.
</li>
<li>
<b>P05_F</b> evaluates the objective function for problem 05.
</li>
<li>
<b>P05_SOL</b> returns the solution for problem 05.
</li>
<li>
<b>P05_TITLE</b> returns a title for problem 05.
</li>
<li>
<b>P06_AB</b> evaluates the limits of the optimization region for problem 06.
</li>
<li>
<b>P06_F</b> evaluates the objective function for problem 06.
</li>
<li>
<b>P06_SOL</b> returns the solution for problem 06.
</li>
<li>
<b>P06_TITLE</b> returns a title for problem 06.
</li>
<li>
<b>P07_AB</b> evaluates the limits of the optimization region for problem 07.
</li>
<li>
<b>P07_F</b> evaluates the objective function for problem 07.
</li>
<li>
<b>P07_SOL</b> returns the solution for problem 07.
</li>
<li>
<b>P07_TITLE</b> returns a title for problem 07.
</li>
<li>
<b>P08_AB</b> evaluates the limits of the optimization region for problem 08.
</li>
<li>
<b>P08_F</b> evaluates the objective function for problem 08.
</li>
<li>
<b>P08_SOL</b> returns the solution for problem 08.
</li>
<li>
<b>P08_TITLE</b> returns a title for problem 08.
</li>
<li>
<b>P09_AB</b> evaluates the limits of the optimization region for problem 09.
</li>
<li>
<b>P09_F</b> evaluates the objective function for problem 09.
</li>
<li>
<b>P09_SOL</b> returns the solution for problem 09.
</li>
<li>
<b>P09_TITLE</b> returns a title for problem 09.
</li>
<li>
<b>P10_AB</b> evaluates the limits of the optimization region for problem 10.
</li>
<li>
<b>P10_F</b> evaluates the objective function for problem 10.
</li>
<li>
<b>P10_SOL</b> returns the solution for problem 10.
</li>
<li>
<b>P10_TITLE</b> returns a title for problem 10.
</li>
<li>
<b>P11_AB</b> evaluates the limits of the optimization region for problem 11.
</li>
<li>
<b>P11_F</b> evaluates the objective function for problem 11.
</li>
<li>
<b>P11_SOL</b> returns the solution for problem 11.
</li>
<li>
<b>P11_TITLE</b> returns a title for problem 11.
</li>
<li>
<b>P12_AB</b> evaluates the limits of the optimization region for problem 12.
</li>
<li>
<b>P12_F</b> evaluates the objective function for problem 12.
</li>
<li>
<b>P12_SOL</b> returns the solution for problem 12.
</li>
<li>
<b>P12_TITLE</b> returns a title for problem 12.
</li>
<li>
<b>R8COL_UNIFORM</b> fills an R8COL with scaled pseudorandom numbers.
</li>
<li>
<b>R8VEC_INDICATOR</b> sets an R8VEC to the indicator vector.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 20 February 2012.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>