forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplex_gm_rule.html
414 lines (366 loc) · 12.2 KB
/
simplex_gm_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
<html>
<head>
<title>
SIMPLEX_GM_RULE - Grundmann-Moeller Quadrature Rules for the Simplex in M dimensions
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SIMPLEX_GM_RULE <br> Grundmann-Moeller Quadrature Rules for the Simplex in M dimensions
</h1>
<hr>
<p>
<b>SIMPLEX_GM_RULE</b>
is a C++ library which
defines Grundmann-Moeller quadrature rules
over the interior of a simplex in M dimensions.
</p>
<p>
The user can choose the spatial dimension M, thus defining the region
to be a triangle (M = 2), tetrahedron (M = 3) or a general M-dimensional
simplex.
</p>
<p>
The user chooses the index <b>S</b> of the rule. Rules are available
with index <b>S</b> = 0 on up. A rule of index <b>S</b> will exactly
integrate any polynomial of total degree <b>2*S+1</b> or less.
</p>
<p>
The rules are defined on the unit M-dimensional simplex. A simple
linear transformation can be used to map the vertices and weights
to an arbitrary simplex, while preserving the accuracy of the rule.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SIMPLEX_GM_RULE</b> is available in
<a href = "../../c_src/simplex_gm_rule/simplex_gm_rule.html">a C version</a> and
<a href = "../../cpp_src/simplex_gm_rule/simplex_gm_rule.html">a C++ version</a> and
<a href = "../../f77_src/simplex_gm_rule/simplex_gm_rule.html">a FORTRAN77 version</a> and
<a href = "../../f_src/simplex_gm_rule/simplex_gm_rule.html">a FORTRAN90 version</a> and
<a href = "../../m_src/simplex_gm_rule/simplex_gm_rule.html">a MATLAB version</a>.
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/cube_felippa_rule/cube_felippa_rule.html">
CUBE_FELIPPA_RULE</a>,
a C++ library which
returns the points and weights of a Felippa quadrature rule
over the interior of a cube in 3D.
</p>
<p>
<a href = "../../cpp_src/pyramid_felippa_rule/pyramid_felippa_rule.html">
PYRAMID_FELIPPA_RULE</a>,
a C++ library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a pyramid in 3D.
</p>
<p>
<a href = "../../cpp_src/simplex_grid/simplex_grid.html">
SIMPLEX_GRID</a>,
a C++ library which
generates a regular grid of points
over the interior of an arbitrary simplex in M dimensions.
</p>
<p>
<a href = "../../cpp_src/square_felippa_rule/square_felippa_rule.html">
SQUARE_FELIPPA_RULE</a>,
a C++ library which
returns the points and weights of a Felippa quadrature rule
over the interior of a square in 2D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_exactness/tetrahedron_exactness.html">
TETRAHEDRON_EXACTNESS</a>,
a C++ program which
investigates the monomial exactness of a quadrature rule
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_felippa_rule/tetrahedron_felippa_rule.html">
TETRAHEDRON_FELIPPA_RULE</a>,
a C++ library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_integrals/tetrahedron_integrals.html">
TETRAHEDRON_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_keast_rule/tetrahedron_keast_rule.html">
TETRAHEDRON_KEAST_RULE</a>,
a C++ library which
defines ten quadrature rules, with exactness degrees 0 through 8,
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">
TETRAHEDRON_MONTE_CARLO</a>,
a C++ program which
uses the Monte Carlo method to estimate integrals
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_ncc_rule/tetrahedron_ncc_rule.html">
TETRAHEDRON_NCC_RULE</a>,
a C++ library which
defines Newton-Cotes Closed (NCC) quadrature rules
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_nco_rule/tetrahedron_nco_rule.html">
TETRAHEDRON_NCO_RULE</a>,
a C++ library which
defines Newton-Cotes Open (NCO) quadrature rules
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/triangle_dunavant_rule/triangle_dunavant_rule.html">
TRIANGLE_DUNAVANT_RULE</a>,
a C++ library
which defines Dunavant quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_fekete_rule/triangle_fekete_rule.html">
TRIANGLE_FEKETE_RULE</a>,
a C++ library which
defines Fekete rules for interpolation or quadrature
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_felippa_rule/triangle_felippa_rule.html">
TRIANGLE_FELIPPA_RULE</a>,
a C++ library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_lyness_rule/triangle_lyness_rule.html">
TRIANGLE_LYNESS_RULE</a>,
a C++ library which
returns Lyness-Jespersen quadrature rules for the triangle.
</p>
<p>
<a href = "../../cpp_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a C++ program which
uses the Monte Carlo method to estimate integrals over a triangle.
</p>
<p>
<a href = "../../cpp_src/triangle_ncc_rule/triangle_ncc_rule.html">
TRIANGLE_NCC_RULE</a>,
a C++ library which
defines Newton-Cotes Closed (NCC) quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_nco_rule/triangle_nco_rule.html">
TRIANGLE_NCO_RULE</a>,
a C++ library which
defines Newton-Cotes Open (NCO) quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/triangle_wandzura_rule/triangle_wandzura_rule.html">
TRIANGLE_WANDZURA_RULE</a>,
a C++ library which
defines Wandzura rules for quadrature
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/wedge_felippa_rule/wedge_felippa_rule.html">
WEDGE_FELIPPA_RULE</a>,
a C++ library which
returns quadratures rules for approximating integrals
over the interior of the unit wedge in 3D.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Paul Bratley, Bennett Fox, Linus Schrage,<br>
A Guide to Simulation,<br>
Second Edition,<br>
Springer, 1987,<br>
ISBN: 0387964673,<br>
LC: QA76.9.C65.B73.
</li>
<li>
Bennett Fox,<br>
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,<br>
ACM Transactions on Mathematical Software,<br>
Volume 12, Number 4, December 1986, pages 362-376.
</li>
<li>
Axel Grundmann, Michael Moeller,<br>
Invariant Integration Formulas for the N-Simplex
by Combinatorial Methods,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 15, Number 2, April 1978, pages 282-290.
</li>
<li>
Pierre LEcuyer,<br>
Random Number Generation,<br>
in Handbook of Simulation,<br>
edited by Jerry Banks,<br>
Wiley, 1998,<br>
ISBN: 0471134031,<br>
LC: T57.62.H37.
</li>
<li>
Peter Lewis, Allen Goodman, James Miller,<br>
A Pseudo-Random Number Generator for the System/360,<br>
IBM Systems Journal,<br>
Volume 8, 1969, pages 136-143.
</li>
<li>
Albert Nijenhuis, Herbert Wilf,<br>
Combinatorial Algorithms for Computers and Calculators,<br>
Second Edition,<br>
Academic Press, 1978,<br>
ISBN: 0-12-519260-6,<br>
LC: QA164.N54.
</li>
<li>
ML Wolfson, HV Wright,<br>
Algorithm 160:
Combinatorial of M Things Taken N at a Time,<br>
Communications of the ACM,<br>
Volume 6, Number 4, April 1963, page 161.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "simplex_gm_rule.cpp">simplex_gm_rule.cpp</a>, the source code.
</li>
<li>
<a href = "simplex_gm_rule.hpp">simplex_gm_rule.hpp</a>, the include file.
</li>
<li>
<a href = "simplex_gm_rule.sh">simplex_gm_rule.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "simplex_gm_rule_prb.cpp">simplex_gm_rule_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "simplex_gm_rule_prb.sh">simplex_gm_rule_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "simplex_gm_rule_prb_output.txt">simplex_gm_rule_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>COMP_NEXT</b> computes the compositions of the integer N into K parts.
</li>
<li>
<b>GM_RULE_SET</b> sets a Grundmann-Moeller rule.
</li>
<li>
<b>GM_RULE_SET_OLD</b> sets a Grundmann-Moeller rule. (OBSOLETE VERSION)
</li>
<li>
<b>GM_RULE_SIZE</b> determines the size of a Grundmann-Moeller rule.
</li>
<li>
<b>I4_CHOOSE</b> computes the binomial coefficient C(N,K).
</li>
<li>
<b>I4_HUGE</b> returns a "huge" I4.
</li>
<li>
<b>I4_MAX</b> returns the maximum of two I4's.
</li>
<li>
<b>I4_MIN</b> returns the smaller of two I4's.
</li>
<li>
<b>I4_POWER</b> returns the value of I^J.
</li>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
<li>
<b>R8_ABS</b> returns the absolute value of an R8.
</li>
<li>
<b>R8_FACTORIAL</b> computes the factorial of N.
</li>
<li>
<b>R8VEC_DOT</b> computes the dot product of a pair of R8VEC's.
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>SIMPLEX_UNIT_MONOMIAL_INT</b> integrates a monomial over a simplex.
</li>
<li>
<b>SIMPLEX_UNIT_MONOMIAL_QUADRATURE:</b> quadrature of monomials in a unit simplex.
</li>
<li>
<b>SIMPLEX_UNIT_SAMPLE</b> returns uniformly random points from a general simplex.
</li>
<li>
<b>SIMPLEX_UNIT_TO_GENERAL</b> maps the unit simplex to a general simplex.
</li>
<li>
<b>SIMPLEX_UNIT_VOLUME</b> computes the volume of the unit simplex.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 26 June 2008.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>