forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsandia_cubature.html
375 lines (346 loc) · 11.9 KB
/
sandia_cubature.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
<html>
<head>
<title>
SANDIA_CUBATURE - Numerical Integration in M Dimensions
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SANDIA_CUBATURE <br> Numerical Integration<br> in M Dimensions
</h1>
<hr>
<p>
<b>SANDIA_CUBATURE</b>
is a C++ library which
implements quadrature rules for certain multidimensional regions and weight functions.
</p>
<p>
We consider the following integration regions:
<ul>
<li>
<b>CN_GEG</b>, the N dimensional hypercube [-1,+1]^N, with the Gegenbauer
weight function:<br>
w(alpha;x) = product ( 1 <= i <= n ) ( 1 - x(i)^2 )^alpha;
</li>
<li>
<b>CN_JAC</b>, the N dimensional hypercube [-1,+1]^N, with the Beta or
Jacobi weight function:<br>
w(alpha,beta;x) = product ( 1 <= i <= n ) ( 1 - x(i) )^alpha * ( 1 + x(i) )^beta;
</li>
<li>
<b>CN_LEG</b>, the N dimensional hypercube [-1,+1]^N, with the Legendre
weight function:<br>
w(x) = 1;
</li>
<li>
<b>EN_HER</b>, the N-dimensional product space (-oo,+oo)^N,
with the Hermite weight function:<br>
w(x) = product ( 1 <= i <= n ) exp ( - x(i)^2 );
</li>
<li>
<b>EPN_GLG</b>, the positive product space [0,+oo)^N, with the generalized
Laguerre weight function:<br>
w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) );
</li>
<li>
<b>EPN_LAG</b>, the positive product space [0,+oo)^N, with the exponential or
Laguerre weight function:<br>
w(x) = product ( 1 <= i <= n ) exp ( - x(i) );
</li>
</ul>
</p>
<p>
The available rules for region <b>EN_HER</b> all have odd precision, ranging
from 1 to 11. Some of these rules are valid for any spatial dimension <b>N</b>.
However, many of these rules are restricted to a limited range, such as
<b>2 <= N < 6</b>. Some of the rules have two forms; in that case,
the particular form is selectable by setting an input argument <b>OPTION</b>
to 1 or 2. Finally, note that in multidimensional integration, the dependence
of the order <b>O</b> (number of abscissas) on the spatial dimension <b>N</b>
is critical. Rules for which the order is a multiple of <b>2^N</b> are not
practical for large values of <b>N</b>. The source code for each rule lists its
formula for the order as a function of <b>N</b>.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SANDIA_CUBATURE</b> is available in
<a href = "../../cpp_src/sandia_cubature/sandia_cubature.html">a C++ version</a> and
<a href = "../../f_src/sandia_cubature/sandia_cubature.html">a FORTRAN90 version</a> and
<a href = "../../m_src/sandia_cubature/sandia_cubature.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/sandia_rules/sandia_rules.html">
SANDIA_RULES</a>,
a C++ library which
produces 1D quadrature rules of
Chebyshev, Clenshaw Curtis, Fejer 2, Gegenbauer, generalized Hermite,
generalized Laguerre, Hermite, Jacobi, Laguerre, Legendre and Patterson types.
</p>
<p>
<a href = "../../cpp_src/stroud/stroud.html">
STROUD</a>,
a C++ library which
defines quadrature rules for a variety of multidimensional reqions.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Arthur Stroud,<br>
Approximate Calculation of Multiple Integrals,<br>
Prentice Hall, 1971,<br>
ISBN: 0130438936,<br>
LC: QA311.S85.
</li>
<li>
Arthur Stroud, Don Secrest,<br>
Gaussian Quadrature Formulas,<br>
Prentice Hall, 1966,<br>
LC: QA299.4G3S7.
</li>
<li>
Dongbin Xiu,<br>
Numerical integration formulas of degree two,<br>
Applied Numerical Mathematics,<br>
Volume 58, 2008, pages 1515-1520.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "sandia_cubature.cpp">sandia_cubature.cpp</a>, the source code.
</li>
<li>
<a href = "sandia_cubature.hpp">sandia_cubature.hpp</a>, the include file.
</li>
<li>
<a href = "sandia_cubature.sh">sandia_cubature.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "sandia_cubature_prb.cpp">sandia_cubature_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "sandia_cubature_prb.sh">sandia_cubature_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "sandia_cubature_prb_output.txt">sandia_cubature_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>C1_GEG_MONOMIAL_INTEGRAL:</b> integral of monomial with Gegenbauer weight on C1.
</li>
<li>
<b>C1_JAC_MONOMIAL_INTEGRAL:</b> integral of a monomial with Jacobi weight over C1.
</li>
<li>
<b>C1_LEG_MONOMIAL_INTEGRAL:</b> integral of monomial with Legendre weight on C1.
</li>
<li>
<b>CN_GEG_01_1</b> implements a precision 1 rule for region CN_GEG.
</li>
<li>
<b>CN_GEG_01_1_SIZE</b> sizes a precision 1 rule for region CN_GEG.
</li>
<li>
<b>CN_GEG_02_XIU</b> implements the Xiu precision 2 rule for region CN_GEG.
</li>
<li>
<b>CN_GEG_02_XIU_SIZE</b> sizes the Xiu precision 2 rule for region CN_GEG.
</li>
<li>
<b>CN_GEG_03_XIU</b> implements the Xiu precision 3 rule for region CN_GEG.
</li>
<li>
<b>CN_GEG_03_XIU_SIZE</b> sizes the Xiu precision 3 rule for region CN_GEG.
</li>
<li>
<b>CN_GEG_MONOMIAL_INTEGRAL:</b> integral of monomial with Gegenbauer weight on CN.
</li>
<li>
<b>CN_JAC_01_1</b> implements a precision 1 rule for region CN_JAC.
</li>
<li>
<b>CN_JAC_01_1_SIZE</b> sizes a precision 1 rule for region CN_JAC.
</li>
<li>
<b>CN_JAC_02_XIU</b> implements the Xiu precision 2 rule for region CN_JAC.
</li>
<li>
<b>CN_JAC_02_XIU_SIZE</b> sizes the Xiu precision 2 rule for region CN_JAC.
</li>
<li>
<b>CN_JAC_MONOMIAL_INTEGRAL:</b> integral of a monomial with Jacobi weight over CN.
</li>
<li>
<b>CN_LEG_01_1</b> implements the midpoint rule for region CN_LEG.
</li>
<li>
<b>CN_LEG_01_1_SIZE</b> sizes the midpoint rule for region CN_LEG.
</li>
<li>
<b>CN_LEG_02_XIU</b> implements the Xiu precision 2 rule for region CN_LEG.
</li>
<li>
<b>CN_LEG_02_XIU_SIZE</b> sizes the Xiu precision 2 rule for region CN_LEG.
</li>
<li>
<b>CN_LEG_03_1</b> implements the Stroud rule CN:3-1 for region CN_LEG.
</li>
<li>
<b>CN_LEG_03_1_SIZE</b> sizes the Stroud rule CN:3-1 for region CN_LEG.
</li>
<li>
<b>CN_LEG_03_XIU</b> implements the Xiu precision 3 rule for region CN_LEG.
</li>
<li>
<b>CN_LEG_03_XIU_SIZE</b> sizes the Xiu precision 3 rule for region CN_LEG.
</li>
<li>
<b>CN_LEG_05_1</b> implements the Stroud rule CN:5-1 for region CN_LEG.
</li>
<li>
<b>CN_LEG_05_1_SIZE</b> sizes the Stroud rule CN:5-1 for region CN_LEG.
</li>
<li>
<b>CN_LEG_05_2</b> implements the Stroud rule CN:5-2 for region CN_LEG.
</li>
<li>
<b>CN_LEG_05_2_SIZE</b> sizes the Stroud rule CN:5-2 for region CN_LEG.
</li>
<li>
<b>CN_LEG_MONOMIAL_INTEGRAL:</b> integral of monomial with Legendre weight on CN.
</li>
<li>
<b>EN_HER_01_1</b> implements the Stroud rule 1.1 for region EN_HER.
</li>
<li>
<b>EN_HER_01_1_SIZE</b> sizes the Stroud rule 1.1 for region EN_HER.
</li>
<li>
<b>EN_HER_02_XIU</b> implements the Xiu precision 2 rule for region EN_HER.
</li>
<li>
<b>EN_HER_02_XIU_SIZE</b> sizes the Xiu precision 2 rule for region EN_HER.
</li>
<li>
<b>EN_HER_03_1</b> implements the Stroud rule 3.1 for region EN_HER.
</li>
<li>
<b>EN_HER_03_1_SIZE</b> sizes the Stroud rule 3.1 for region EN_HER.
</li>
<li>
<b>EN_HER_03_XIU</b> implements the Xiu precision 3 rule for region EN_HER.
</li>
<li>
<b>EN_HER_03_XIU_SIZE</b> sizes the Xiu precision 3 rule for region EN_HER.
</li>
<li>
<b>EN_HER_05_1</b> implements the Stroud rule 5.1 for region EN_HER.
</li>
<li>
<b>EN_HER_05_1_SIZE</b> sizes the Stroud rule 5.1 for region EN_HER.
</li>
<li>
<b>EN_HER_05_2</b> implements the Stroud rule 5.2 for region EN_HER.
</li>
<li>
<b>EN_HER_05_2_SIZE</b> sizes the Stroud rule 5.2 for region EN_HER.
</li>
<li>
<b>EN_HER_MONOMIAL_INTEGRAL</b> evaluates monomial integrals in EN_HER.
</li>
<li>
<b>EP1_GLG_MONOMIAL_INTEGRAL:</b> integral of monomial with GLG weight on EP1.
</li>
<li>
<b>EP1_LAG_MONOMIAL_INTEGRAL:</b> integral of monomial with Laguerre weight on EP1.
</li>
<li>
<b>EPN_GLG_01_1</b> implements a precision 1 rule for region EPN_GLG.
</li>
<li>
<b>EPN_GLG_01_1_SIZE</b> sizes a precision 1 rule for region EPN_GLG.
</li>
<li>
<b>EPN_GLG_02_XIU</b> implements the Xiu precision 2 rule for region EPN_GLG.
</li>
<li>
<b>EPN_GLG_02_XIU_SIZE</b> sizes the Xiu precision 2 rule for region EPN_GLG.
</li>
<li>
<b>EPN_GLG_MONOMIAL_INTEGRAL:</b> integral of monomial with GLG weight on EPN.
</li>
<li>
<b>EPN_LAG_01_1</b> implements a precision 1 rule for region EPN_LAG.
</li>
<li>
<b>EPN_LAG_01_1_SIZE</b> sizes a precision 1 rule for region EPN_LAG.
</li>
<li>
<b>EPN_LAG_02_XIU</b> implements the Xiu precision 2 rule for region EPN_LAG.
</li>
<li>
<b>EPN_LAG_02_XIU_SIZE</b> sizes the Xiu precision 2 rule for region EPN_LAG.
</li>
<li>
<b>EPN_LAG_MONOMIAL_INTEGRAL:</b> integral of monomial with Laguerre weight on EPN.
</li>
<li>
<b>GW_02_XIU</b> implements the Golub-Welsch version of the Xiu rule.
</li>
<li>
<b>GW_02_XIU_SIZE</b> sizes the Golub Welsch version of the Xiu rule.
</li>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 05 March 2010.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>