forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrk4.html
201 lines (168 loc) · 4.58 KB
/
rk4.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
<html>
<head>
<title>
RK4 - Runge-Kutta 4th Order ODE Solver
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
RK4 <br> Runge-Kutta 4th Order ODE Solver
</h1>
<hr>
<p>
<b>RK4</b>
is a C++ library which
implements a simple Runge-Kutta solver for an initial value problem.
</p>
<p>
The <b>rk4()</b> function does not include any error estimator. It
takes a single step at a time, requiring the user to control the step size.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>RK4</b> is available in
<a href = "../../c_src/rk4/rk4.html">a C version</a> and
<a href = "../../cpp_src/rk4/rk4.html">a C++ version</a> and
<a href = "../../f77_src/rk4/rk4.html">a FORTRAN77 version</a> and
<a href = "../../f_src/rk4/rk4.html">a FORTRAN90 version</a> and
<a href = "../../m_src/rk4/rk4.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/gsl/gsl.html">
GSL</a>,
a C++ library which
includes routines for solving differential equations.
</p>
<p>
<a href = "../../f_src/nms/nms.html">
NMS</a>,
a FORTRAN90 library which
includes the <b>DDRIV</b> package of ODE solvers.
</p>
<p>
<a href = "../../cpp_src/ode/ode.html">
ODE</a>,
a C++ library which
solves a system of ordinary differential equations,
by Shampine and Gordon.
</p>
<p>
<a href = "../../f77_src/odepack/odepack.html">
ODEPACK</a>,
a FORTRAN77 library which
contains nine ODE solvers, including LSODE, LSODES, LSODA,
LSODAR, LSODPK, LSODKR, LSODI, LSOIBT, and LSODIS,
by Alan Hindmarsh.
</p>
<p>
<a href = "../../cpp_src/rkf45/rkf45.html">
RKF45</a>,
a C++ library which
implements the Runge-Kutta-Fehlberg ODE solver.
</p>
<p>
<a href = "../../f_src/test_ode/test_ode.html">
TEST_ODE</a>,
a FORTRAN90 library which
contains routines which define some test problems for ODE solvers.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Erwin Fehlberg,<br>
Low-order Classical Runge-Kutta Formulas with Stepsize Control,<br>
NASA Technical Report R-315, 1969.
</li>
<li>
Lawrence Shampine, Herman Watts, S Davenport,<br>
Solving Non-stiff Ordinary Differential Equations -
The State of the Art,<br>
SIAM Review,<br>
Volume 18, pages 376-411, 1976.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "rk4.cpp">rk4.cpp</a>, the source code.
</li>
<li>
<a href = "rk4.hpp">rk4.hpp</a>, the include file.
</li>
<li>
<a href = "rk4.sh">rk4.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "rk4_prb.cpp">rk4_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "rk4_prb.sh">rk4_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "rk4_prb_output.txt">rk4_prb_output.txt</a>,
the output file.
</li>
<li>
<a href = "rk4_prb.png">rk4_prb.png</a>,
an image of the solution.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>RK4</b> takes one Runge-Kutta step for a scalar ODE.
</li>
<li>
<b>RK4VEC</b> takes one Runge-Kutta step for a vector ODE.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 09 October 2013.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>