forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquadrature_test.html
711 lines (665 loc) · 20.3 KB
/
quadrature_test.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
<html>
<head>
<title>
QUADRATURE_TEST - Quadrature Rule Applied to Test Integrals
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
QUADRATURE_TEST <br> Quadrature Rule Applied to Test Integrals
</h1>
<hr>
<p>
<b>QUADRATURE_TEST</b>
is a C++ program which
reads three files that define
a quadrature rule, applies the quadrature rule to a set of
test integrals, and reports the results.
</p>
<p>
The quadrature rule is defined by three text files:
<ol>
<li>
<i>the "X" file</i> lists the abscissas (N rows, M columns);
</li>
<li>
<i>the "W" file</i> lists the weights (N rows);
</li>
<li>
<i>the "R" file</i> lists the integration region corners
(2 rows, M columns);
</li>
</ol>
For more on quadrature rules, see the <b>QUADRATURE_RULES</b>
listing below.
</p>
<p>
The test integrals come from the <b>TEST_NINT</b> library.
</p>
<p>
The list of integrand functions includes:
<ol>
<li>
f(x) = ( sum ( x(1:m) ) )**2;
</li>
<li>
f(x) = ( sum ( 2 * x(1:m) - 1 ) )**4;
</li>
<li>
f(x) = ( sum ( x(1:m) ) )**5;
</li>
<li>
f(x) = ( sum ( 2 * x(1:m) - 1 ) )**6;
</li>
<li>
f(x) = 1 / ( 1 + sum ( 2 * x(1:m) ) );
</li>
<li>
f(x) = product ( 2 * abs ( 2 * x(1:m) - 1 ) );
</li>
<li>
f(x) = product ( pi / 2 ) * sin ( pi * x(1:m) );
</li>
<li>
f(x) = ( sin ( (pi/4) * sum ( x(1:m) ) ) )**2;
</li>
<li>
f(x) = exp ( sum ( c(1:m) * x(1:m) ) );
</li>
<li>
f(x) = sum ( abs ( x(1:m) - 0.5 ) );
</li>
<li>
f(x) = exp ( sum ( abs ( 2 * x(1:m) - 1 ) ) );
</li>
<li>
f(x) = product ( 1 <= i <= m ) ( i * cos ( i * x(i) ) );
</li>
<li>
f(x) = product ( 1 <= i <= m ) t(n(i))(x(i)), t(n(i))
is a Chebyshev polynomial;
</li>
<li>
f(x) = sum ( 1 <= i <= m ) (-1)**i * product ( 1 <= j <= i ) x(j);
</li>
<li>
f(x) = product ( 1 <= i <= order ) x(mod(i-1,m)+1);
</li>
<li>
f(x) = sum ( abs ( x(1:m) - x0(1:m) ) );
</li>
<li>
f(x) = sum ( ( x(1:m) - x0(1:m) )**2 );
</li>
<li>
f(x) = 1 inside an m-dimensional sphere around x0(1:m), 0 outside;
</li>
<li>
f(x) = product ( sqrt ( abs ( x(1:m) - x0(1:m) ) ) );
</li>
<li>
f(x) = ( sum ( x(1:m) ) )**power;
</li>
<li>
f(x) = c * product ( x(1:m)^e(1:m) ) on the surface of
an m-dimensional unit sphere;
</li>
<li>
f(x) = c * product ( x(1:m)^e(1:m) ) in an m-dimensional ball;
</li>
<li>
f(x) = c * product ( x(1:m)^e(1:m) ) in the unit m-dimensional simplex;
</li>
<li>
f(x) = product ( abs ( 4 * x(1:m) - 2 ) + c(1:m) )
/ ( 1 + c(1:m) ) );
</li>
<li>
f(x) = exp ( c * product ( x(1:m) ) );
</li>
<li>
f(x) = product ( c(1:m) * exp ( - c(1:m) * x(1:m) ) );
</li>
<li>
f(x) = cos ( 2 * pi * r + sum ( c(1:m) * x(1:m) ) ), <br>
Genz "Oscillatory";
</li>
<li>
f(x) = 1 / product ( c(1:m)**2 + (x(1:m) - x0(1:m))**2),<br>
Genz "Product Peak";
</li>
<li>
f(x) = 1 / ( 1 + sum ( c(1:m) * x(1:m) ) )**(m+r),<br>
Genz "Corner Peak";
</li>
<li>
f(x) = exp(-sum(c(1:m)**2 * ( x(1:m) - x0(1:m))**2 ) ),<br>
Genz "Gaussian";
</li>
<li>
f(x) = exp ( - sum ( c(1:m) * abs ( x(1:m) - x0(1:m) ) ) ),
Genz "Continuous";
</li>
<li>
f(x) = exp(sum(c(1:m)*x(1:m)) for x(1:m) <= x0(1:m), 0 otherwise,<br>
Genz "Discontinuous";
</li>
</ol>
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<b>quadrature_test</b> <i>prefix</i>
<dl>
<dt>
<i>prefix</i>
</dt>
<dd>
the common prefix for the files containing the abscissa (X),
weight (W) and region (R) information of the quadrature rule;
</dd>
</dl>
</p>
<p>
If the arguments are not supplied on the command line, the
program will prompt for them.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>QUADRATURE_TEST</b> is available in
<a href = "../../cpp_src/quadrature_test/quadrature_test.html">a C++ version</a> and
<a href = "../../f_src/quadrature_test/quadrature_test.html">a FORTRAN90 version</a> and
<a href = "../../m_src/quadrature_test/quadrature_test.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/gsl/gsl.html">
GSL</a>,
a C++ library which
includes routines for estimating multidimensional integrals.
</p>
<p>
<a href = "../../f_src/integral_test/integral_test.html">
INTEGRAL_TEST</a>,
a FORTRAN90 program which
uses test integrals to evaluate sets of quadrature points.
</p>
<p>
<a href = "../../cpp_src/nint_exactness/nint_exactness.html">
NINT_EXACTNESS</a>,
a C++ program which
demonstrates how to measure the
polynomial exactness of a multidimensional quadrature rule.
</p>
<p>
<a href = "../../cpp_src/nintlib/nintlib.html">
NINTLIB</a>,
a C++ library which
numerically estimates integrals
in multiple dimensions.
</p>
<p>
<a href = "../../cpp_src/product_rule/product_rule.html">
PRODUCT_RULE</a>,
a C++ program which
creates a multidimensional quadrature rule as a product of
one dimensional rules.
</p>
<p>
<a href = "../../datasets/quadrature_rules/quadrature_rules.html">
QUADRATURE_RULES</a>,
a dataset directory which
contains a description and examples of quadrature rules defined
by a set of "X", "W" and "R" files.
</p>
<p>
<a href = "../../cpp_src/stroud/stroud.html">
STROUD</a>,
a C++ library which
contains quadrature
rules for a variety of unusual areas, surfaces and volumes in 2D,
3D and N-dimensions.
</p>
<p>
<a href = "../../cpp_src/test_nint/test_nint.html">
TEST_NINT</a>,
a C++ library which
defines a set of integrand functions to be used for testing
multidimensional quadrature rules and routines.
</p>
<p>
<a href = "../../cpp_src/testpack/testpack.html">
TESTPACK</a>,
a C++ library which
defines a set of integrands used to test multidimensional quadrature.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
JD Beasley, SG Springer,<br>
Algorithm AS 111:
The Percentage Points of the Normal Distribution,<br>
Applied Statistics,<br>
Volume 26, 1977, pages 118-121.
</li>
<li>
Paul Bratley, Bennett Fox, Harald Niederreiter,<br>
Implementation and Tests of Low-Discrepancy Sequences,<br>
ACM Transactions on Modeling and Computer Simulation,<br>
Volume 2, Number 3, July 1992, pages 195-213.
</li>
<li>
Roger Broucke,<br>
Algorithm 446:
Ten Subroutines for the Manipulation of Chebyshev Series,<br>
Communications of the ACM,<br>
Volume 16, 1973, pages 254-256.
</li>
<li>
William Cody, Kenneth Hillstrom,<br>
Chebyshev Approximations for the Natural Logarithm of the
Gamma Function,
Mathematics of Computation,<br>
Volume 21, Number 98, April 1967, pages 198-203.
</li>
<li>
Richard Crandall,<br>
Projects in Scientific Computing,<br>
Springer, 2005,<br>
ISBN: 0387950095,<br>
LC: Q183.9.C733.
</li>
<li>
Philip Davis, Philip Rabinowitz,<br>
Methods of Numerical Integration,<br>
Second Edition,<br>
Dover, 2007,<br>
ISBN: 0486453391,<br>
LC: QA299.3.D28.
</li>
<li>
Gerald Folland,<br>
How to Integrate a Polynomial Over a Sphere,<br>
American Mathematical Monthly,<br>
Volume 108, Number 5, May 2001, pages 446-448.
</li>
<li>
Leslie Fox, Ian Parker,<br>
Chebyshev Polynomials in Numerical Analysis,<br>
Oxford Press, 1968,<br>
LC: QA297.F65.
</li>
<li>
Alan Genz,<br>
Testing Multidimensional Integration Routines,<br>
in Tools, Methods, and Languages for Scientific and
Engineering Computation,<br>
edited by B Ford, JC Rault, F Thomasset,<br>
North-Holland, 1984, pages 81-94,<br>
ISBN: 0444875700,<br>
LC: Q183.9.I53.
</li>
<li>
Alan Genz,<br>
A Package for Testing Multiple Integration Subroutines,<br>
in Numerical Integration:
Recent Developments, Software and Applications,<br>
edited by Patrick Keast, Graeme Fairweather,<br>
Reidel, 1987, pages 337-340,<br>
ISBN: 9027725144,<br>
LC: QA299.3.N38.
</li>
<li>
Kenneth Hanson,<br>
Quasi-Monte Carlo: halftoning in high dimensions?<br>
in Computatinal Imaging,<br>
Edited by CA Bouman, RL Stevenson,<br>
Proceedings SPIE,<br>
Volume 5016, 2003, pages 161-172.
</li>
<li>
John Hart, Ward Cheney, Charles Lawson, Hans Maehly,
Charles Mesztenyi, John Rice, Henry Thatcher,
Christoph Witzgall,<br>
Computer Approximations,<br>
Wiley, 1968,<br>
LC: QA297.C64.
</li>
<li>
Stephen Joe, Frances Kuo<br>
Remark on Algorithm 659:
Implementing Sobol's Quasirandom Sequence Generator,<br>
ACM Transactions on Mathematical Software,<br>
Volume 29, Number 1, March 2003, pages 49-57.
</li>
<li>
David Kahaner, Cleve Moler, Steven Nash,<br>
Numerical Methods and Software,<br>
Prentice Hall, 1989,<br>
ISBN: 0-13-627258-4,<br>
LC: TA345.K34.
</li>
<li>
Bradley Keister,<br>
Multidimensional Quadrature Algorithms,<br>
Computers in Physics,<br>
Volume 10, Number 2, March/April, 1996, pages 119-122.
</li>
<li>
Arnold Krommer, Christoph Ueberhuber,<br>
Numerical Integration on Advanced Compuer Systems,<br>
Springer, 1994,<br>
ISBN: 3540584102,<br>
LC: QA299.3.K76.
</li>
<li>
Anargyros Papageorgiou, Joseph Traub,<br>
Faster Evaluation of Multidimensional Integrals,<br>
Computers in Physics,<br>
Volume 11, Number 6, November/December 1997, pages 574-578.
</li>
<li>
Thomas Patterson,<br>
On the Construction of a Practical Ermakov-Zolotukhin
Multiple Integrator,<br>
in Numerical Integration:
Recent Developments, Software and Applications,<br>
edited by Patrick Keast and Graeme Fairweather,<br>
D. Reidel, 1987, pages 269-290.
</li>
<li>
Arthur Stroud,<br>
Approximate Calculation of Multiple Integrals,<br>
Prentice Hall, 1971,<br>
ISBN: 0130438936,<br>
LC: QA311.S85.
</li>
<li>
Arthur Stroud, Don Secrest,<br>
Gaussian Quadrature Formulas,<br>
Prentice Hall, 1966,<br>
LC: QA299.4G3S7.
</li>
<li>
Xiaoqun Wang, Kai-Tai Fang,<br>
The Effective Dimension and quasi-Monte Carlo Integration,<br>
Journal of Complexity,<br>
Volume 19, pages 101-124, 2003.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "quadrature_test.cpp">quadrature_test.cpp</a>, the source code.
</li>
<li>
<a href = "quadrature_test.sh">quadrature_test.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>CC_D2_LEVEL4</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 2 of level 4, 65 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d2_level4_x.txt">
cc_d2_level4_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d2_level4_w.txt">
cc_d2_level4_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d2_level4_r.txt">
cc_d2_level4_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d2_level4_test.txt">cc_d2_level4_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D2_LEVEL5</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 2 of level 5, 145 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d2_level5_x.txt">
cc_d2_level5_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d2_level5_w.txt">
cc_d2_level5_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d2_level5_r.txt">
cc_d2_level5_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d2_level5_test.txt">cc_d2_level5_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D6_LEVEL0</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 6 of level 0, 1 point.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level0_x.txt">
cc_d6_level0_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level0_w.txt">
cc_d6_level0_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level0_r.txt">
cc_d6_level0_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d6_level0_test.txt">cc_d6_level0_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D6_LEVEL1</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 6 of level 1, 13 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level1_x.txt">
cc_d6_level1_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level1_w.txt">
cc_d6_level1_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level1_r.txt">
cc_d6_level1_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d6_level1_test.txt">cc_d6_level1_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D6_LEVEL2</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 6 of level 2, 85 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level2_x.txt">cc_d6_level2_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level2_w.txt">cc_d6_level2_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level2_r.txt">cc_d6_level2_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d6_level2_test.txt">cc_d6_level2_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D6_LEVEL3</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 6 of level 3, 389 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level3_x.txt">cc_d6_level3_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level3_w.txt">cc_d6_level3_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level3_r.txt">cc_d6_level3_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d6_level3_test.txt">cc_d6_level3_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D6_LEVEL4</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 6 of level 4, 1457 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level4_x.txt">cc_d6_level4_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level4_w.txt">cc_d6_level4_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level4_r.txt">cc_d6_level4_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d6_level4_test.txt">cc_d6_level4_test.txt</a>,
the test results.
</li>
</ul>
</p>
<p>
<b>CC_D6_LEVEL5</b> is a Clenshaw-Curtis sparse grid quadrature
rule in dimension 6 of level 5, 4865 points.
<ul>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level5_x.txt">cc_d6_level5_x.txt</a>,
the "X" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level5_w.txt">cc_d6_level5_w.txt</a>,
the "W" file.
</li>
<li>
<a href = "../../datasets/quadrature_rules/cc_d6_level5_r.txt">cc_d6_level5_r.txt</a>,
the "R" file.
</li>
<li>
<a href = "cc_d6_level5_test.txt">cc_d6_level5_test.txt</a>,
the test results.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main program for QUADRATURE_TEST.
</li>
<li>
<b>CH_EQI</b> is true if two characters are equal, disregarding case.
</li>
<li>
<b>CH_TO_DIGIT</b> returns the integer value of a base 10 digit.
</li>
<li>
<b>DTABLE_DATA_READ</b> reads the data from a DTABLE file.
</li>
<li>
<b>DTABLE_HEADER_READ</b> reads the header from a DTABLE file.
</li>
<li>
<b>FILE_COLUMN_COUNT</b> counts the number of columns in the first line of a file.
</li>
<li>
<b>FILE_ROW_COUNT</b> counts the number of row records in a file.
</li>
<li>
<b>S_CAT</b> concatenates two strings to make a third string.
</li>
<li>
<b>S_TO_I4</b> reads an I4 from a string.
</li>
<li>
<b>S_TO_R8</b> reads an R8 value from a string.
</li>
<li>
<b>S_TO_R8VEC</b> reads an R8VEC from a string.
</li>
<li>
<b>S_WORD_COUNT</b> counts the number of "words" in a string.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 06 June 2007.
</i>
<!-- John Burkardt -->
</body>
</html>