forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathline_fekete_rule.html
262 lines (227 loc) · 7.52 KB
/
line_fekete_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
<html>
<head>
<title>
LINE_FEKETE_RULE - Approximate Fekete Points in an Interval
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
LINE_FEKETE_RULE<br>
Approximate Fekete Points in an Interval
</h1>
<hr>
<p>
<b>LINE_FEKETE_RULE</b>
is a C++ library which
approximates the location of Fekete points in an interval [A,B].
A family of sets of Fekete points, indexed by size N, represents
an excellent choice for defining a polynomial interpolant.
</p>
<p>
Given a desired number of points N, the best choice for abscissas is
a set of Lebesgue points, which minimize the Lebesgue constant,
which describes the error in polynomial interpolation. Sets of
Lebesgue points are difficult to define mathematically. Fekete
points are a related, computable set, defined as those sets maximizing
the magnitude of the determinant of the Vandermonde matrix associated
with the points. Analytic definitions of these points are known for
a few cases, but there is a general computational procedure for
approximating them, which is demonstrated here.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>LINE_FEKETE_RULE</b> is available in
<a href = "../../c_src/line_fekete_rule/line_fekete_rule.html">a C version</a> and
<a href = "../../cpp_src/line_fekete_rule/line_fekete_rule.html">a C++ version</a> and
<a href = "../../f77_src/line_fekete_rule/line_fekete_rule.html">a FORTRAN77 version</a> and
<a href = "../../f_src/line_fekete_rule/line_fekete_rule.html">a FORTRAN90 version</a> and
<a href = "../../m_src/line_fekete_rule/line_fekete_rule.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/lebesgue/lebesgue.html">
LEBESGUE</a>,
a C++ library which
is given a set of nodes in 1D, and
plots the Lebesgue function, and estimates the Lebesgue constant,
which measures the maximum magnitude of the potential error
of Lagrange polynomial interpolation.
</p>
<p>
<a href = "../../cpp_src/line_felippa_rule/line_felippa_rule.html">
LINE_FELIPPA_RULE</a>,
a C++ library which
returns the points and weights of a Felippa quadrature rule
over the interior of a line segment in 1D.
</p>
<p>
<a href = "../../cpp_src/line_grid/line_grid.html">
LINE_GRID</a>,
a C++ library which
computes a grid of points
over the interior of a line segment in 1D.
</p>
<p>
<a href = "../../cpp_src/line_ncc_rule/line_ncc_rule.html">
LINE_NCC_RULE</a>,
a C++ library which
computes a Newton Cotes Closed (NCC) quadrature rule for the line,
that is, for an interval of the form [A,B], using equally spaced points
which include the endpoints.
</p>
<p>
<a href = "../../cpp_src/line_nco_rule/line_nco_rule.html">
LINE_NCO_RULE</a>,
a C++ library which
computes a Newton Cotes Open (NCO) quadrature rule,
using equally spaced points,
over the interior of a line segment in 1D.
</p>
<p>
<a href = "../../cpp_src/qr_solve/qr_solve.html">
QR_SOLVE</a>,
a C++ library which
computes the least squares solution of a linear system A*x=b.
</p>
<p>
<a href = "../../cpp_src/quadrature_weights_vandermonde/quadrature_weights_vandermonde.html">
QUADRATURE_WEIGHTS_VANDERMONDE</a>,
a C++ library which
computes the weights of a quadrature rule using the Vandermonde
matrix, assuming that the points have been specified.
</p>
<p>
<a href = "../../cpp_src/triangle_fekete_rule/triangle_fekete_rule.html">
TRIANGLE_FEKETE_RULE</a>,
a C++ library which
defines Fekete rules for quadrature or interpolation
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/vandermonde/vandermonde.html">
VANDERMONDE</a>,
a C++ library which
carries out certain operations associated
with the Vandermonde matrix.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Len Bos, Norm Levenberg,<br>
On the calculation of approximate Fekete points:
the univariate case,<br>
Electronic Transactions on Numerical Analysis, <br>
Volume 30, pages 377-397, 2008.
</li>
<li>
Alvise Sommariva, Marco Vianello,<br>
Computing approximate Fekete points by QR factorizations
of Vandermonde matrices,<br>
Computers and Mathematics with Applications,<br>
Volume 57, 2009, pages 1324-1336.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "line_fekete_rule.cpp">line_fekete_rule.cpp</a>, the source code.
</li>
<li>
<a href = "line_fekete_rule.hpp">line_fekete_rule.hpp</a>, the include file.
</li>
<li>
<a href = "line_fekete_rule.sh">line_fekete_rule.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "line_fekete_rule_prb.cpp">line_fekete_rule_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "line_fekete_rule_prb.sh">line_fekete_rule_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "line_fekete_rule_prb_output.txt">line_fekete_rule_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>CHEBY_VAN1</b> returns the Chebyshev Vandermonde-like matrix for [A,B].
</li>
<li>
<b>LEGENDRE_VAN</b> returns the LEGENDRE_VAN matrix.
</li>
<li>
<b>LINE_FEKETE_CHEBYSHEV:</b> approximate Fekete points in an interval [A,B].
</li>
<li>
<b>LINE_FEKETE_LEGENDRE</b> computes approximate Fekete points in an interval [A,B].
</li>
<li>
<b>LINE_FEKETE_MONOMIAL</b> computes approximate Fekete points in an interval [A,B].
</li>
<li>
<b>LINE_MONOMIAL_MOMENTS</b> computes monomial moments in [A,B].
</li>
<li>
<b>R8MAT_PRINT</b> prints an R8MAT.
</li>
<li>
<b>R8MAT_PRINT_SOME</b> prints some of an R8MAT.
</li>
<li>
<b>R8VEC_LINSPACE</b> creates a vector of linearly spaced values.
</li>
<li>
<b>R8VEC_PRINT</b> prints an R8VEC.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 13 April 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>