forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfem2d_poisson_rectangle.html
355 lines (322 loc) · 10.9 KB
/
fem2d_poisson_rectangle.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
<html>
<head>
<title>
FEM2D_POISSON_RECTANGLE - Finite Element Solution of the 2D Poisson Equation
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FEM2D_POISSON_RECTANGLE <br> Finite Element Solution of the 2D Poisson Equation
</h1>
<hr>
<p>
<b>FEM2D_POISSON_RECTANGLE</b>
is a C++ program which
solves the 2D Poisson equation using the
finite element method.
</p>
<p>
The computational region is a rectangle, with Dirichlet
boundary conditions applied along the boundary, and the Poisson
equation applied inside. Thus, the state variable U(x,y) satisfies:
<pre>
- ( Uxx + Uyy ) = F(x,y) in the box;
U(x,y) = G(x,y) on the box boundary;
</pre>
For this program, the boundary condition function G(x,y) is
identically zero.
</p>
<p>
The computational region is first covered with an NX by NY
rectangular array of points, creating (NX-1)*(NY-1) subrectangles.
Each subrectangle is divided into two triangles, creating a total
of 2*(NX-1)*(NY-1) geometric "elements". Because quadratic basis
functions are to be used, each triangle will be associated not only
with the three corner nodes that defined it, but with three extra
midside nodes. If we include these additional nodes, there are
now a total of (2*NX-1)*(2*NY-1) nodes in the region.
</p>
<p>
We now assume that the unknown function U(x,y) can be represented
as a linear combination of the basis functions associated with each
node. The value of U at the boundary nodes is obvious, so we
concentrate on the NUNK interior nodes where U(x,y) is unknown.
For each node I, we determine a basis function PHI(I)(x,y), and
evaluate the following finite element integral:
<pre>
Integral ( Ux(x,y) * PHIx(I)(x,y) + Uy(x,y) * PHIy(I)(x,y) ) =
Integral ( F(x,y) * PHI(I)(x,y)
</pre>
The set of all such equations yields a linear system for the
coefficients of the representation of U.
</p>
<p>
The program allows the user to supply two routines:
<ul>
<li>
<b>RHS ( X, Y )</b> returns the right hand side F(x,y)
of the Poisson equation.
</li>
<li>
<b>EXACT ( X, Y, U, DUDX, DUDY )</b> returns
the exact solution of the Poisson equation. This routine is
necessary so that error analysis
can be performed, reporting the L2 and H1 seminorm errors
between the true and computed solutions. It is also used
to evaluate the boundary conditions.
</li>
</ul>
</p>
<p>
There are a few variables that are easy to manipulate. In particular,
the user can change the variables NX and NY in the main program,
to change the number of nodes and elements. The variables (XL,YB)
and (XR,YT) define the location of the lower left and upper right
corners of the rectangular region, and these can also be changed
in a single place in the main program.
</p>
<p>
The program writes out a file containing an Encapsulated
PostScript image of the nodes and elements, with numbers.
For values of NX and NY over 10, the plot is too cluttered to
read. For lower values, however, it is
a valuable map of what is going on in the geometry.
</p>
<p>
The program is also able to write out a file containing the
solution value at every node. This file may be used to create
contour plots of the solution.
</p>
<p>
The original version of this code comes from Professor Janet Peterson.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FEM2D_POISSON_RECTANGLE</b> is available in
<a href = "../../c_src/fem2d_poisson_rectangle/fem2d_poisson_rectangle.html">a C version</a> and
<a href = "../../cpp_src/fem2d_poisson_rectangle/fem2d_poisson_rectangle.html">a C++ version</a> and
<a href = "../../f77_src/fem2d_poisson_rectangle/fem2d_poisson_rectangle.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fem2d_poisson_rectangle/fem2d_poisson_rectangle.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fem2d_poisson_rectangle/fem2d_poisson_rectangle.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/fem2d_poisson_rectangle_linear/fem2d_poisson_rectangle_linear.html">
FEM2D_POISSON_RECTANGLE_LINEAR</a>,
a C++ program which
solves the 2D Poisson equation on a rectangle, using the finite element method,
and piecewise linear triangular elements.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Hans Rudolf Schwarz,<br>
Finite Element Methods,<br>
Academic Press, 1988,<br>
ISBN: 0126330107,<br>
LC: TA347.F5.S3313.
</li>
<li>
Gilbert Strang, George Fix,<br>
An Analysis of the Finite Element Method,<br>
Cambridge, 1973,<br>
ISBN: 096140888X,<br>
LC: TA335.S77.
</li>
<li>
Olgierd Zienkiewicz,<br>
The Finite Element Method,<br>
Sixth Edition,<br>
Butterworth-Heinemann, 2005,<br>
ISBN: 0750663200,<br>
LC: TA640.2.Z54
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fem2d_poisson_rectangle.cpp">fem2d_poisson_rectangle.cpp</a>, the source code;
</li>
<li>
<a href = "fem2d_poisson_rectangle.sh">fem2d_poisson_rectangle.sh</a>,
commands to compile and run the program;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "rectangle_output.txt">rectangle_output.txt</a>,
the output file.
</li>
<li>
<a href = "rectangle_nodes.png">rectangle_nodes.png</a>,
a PNG image of
the nodes, for NX = NY = 7 (the picture can be
hard to read for much larger values of NX and NY);
</li>
<li>
<a href = "rectangle_nodes.txt">rectangle_nodes.txt</a>,
a text file containing a list, for each node, of its X and Y
coordinates;
</li>
<li>
<a href = "rectangle_elements.png">rectangle_elements.png</a>,
a PNG image of
the elements, for NX = NY = 7 (the picture can be
hard to read for much larger values of NX and NY);
</li>
<li>
<a href = "rectangle_elements.txt">rectangle_elements.txt</a>,
a text file containing a list, for each element, of the six
nodes that compose it;
</li>
<li>
<a href = "rectangle_solution.txt">rectangle_solution.txt</a>,
a text file containing a list, for each node, of the value
of the solution;
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main routine of the finite element program FEM2D_POISSON_RECTANGLE.
</li>
<li>
<b>AREA_SET</b> sets the area of each element.
</li>
<li>
<b>ASSEMBLE</b> assembles the matrix and right-hand side using piecewise quadratics.
</li>
<li>
<b>BANDWIDTH</b> determines the bandwidth of the coefficient matrix.
</li>
<li>
<b>BOUNDARY</b> modifies the linear system for boundary conditions.
</li>
<li>
<b>COMPARE</b> compares the exact and computed solution at the nodes.
</li>
<li>
<b>DGB_FA</b> performs a LINPACK-style PLU factorization of an DGB matrix.
</li>
<li>
<b>DGB_PRINT_SOME</b> prints some of a DGB matrix.
</li>
<li>
<b>DGB_SL</b> solves a system factored by DGB_FA.
</li>
<li>
<b>ELEMENT_WRITE</b> writes the elements to a file.
</li>
<li>
<b>ERRORS</b> calculates the error in the L2 and H1-seminorm.
</li>
<li>
<b>EXACT</b> calculates the exact solution and its first derivatives.
</li>
<li>
<b>GRID_T6</b> produces a grid of pairs of 6 node triangles.
</li>
<li>
<b>I4_MAX</b> returns the maximum of two ints.
</li>
<li>
<b>I4_MIN</b> returns the smaller of two ints.
</li>
<li>
<b>I4VEC_PRINT_SOME</b> prints "some" of an I4VEC.
</li>
<li>
<b>INDX_SET</b> assigns a boundary value index or unknown value index at each node.
</li>
<li>
<b>NODES_PLOT</b> plots a pointset.
</li>
<li>
<b>NODES_WRITE</b> writes the nodes to a file.
</li>
<li>
<b>QBF</b> evaluates the quadratic basis functions.
</li>
<li>
<b>QUAD_A</b> sets the quadrature rule for assembly.
</li>
<li>
<b>QUAD_E</b> sets a quadrature rule for the error calculation.
</li>
<li>
<b>R8_HUGE</b> returns a "huge" R8.
</li>
<li>
<b>R8_MAX</b> returns the maximum of two R8's.
</li>
<li>
<b>R8_MIN</b> returns the minimum of two R8's.
</li>
<li>
<b>R8_NINT</b> returns the nearest integer to an R8.
</li>
<li>
<b>R8VEC_PRINT_SOME</b> prints "some" of an R8VEC.
</li>
<li>
<b>RHS</b> gives the right-hand side of the differential equation.
</li>
<li>
<b>S_LEN_TRIM</b> returns the length of a string to the last nonblank.
</li>
<li>
<b>SOLUTION_WRITE</b> writes the solution to a file.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TIMESTRING</b> returns the current YMDHMS date as a string.
</li>
<li>
<b>TRIANGULATION_ORDER6_PLOT</b> plots a 6-node triangulation of a pointset.
</li>
<li>
<b>XY_SET</b> sets the XY coordinates of the nodes.
</li>
</ul>
<p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 24 September 2008.
</i>
<!-- John Burkardt -->
</body>
</html>