forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfd1d_advection_lax_wendroff.html
283 lines (244 loc) · 8.27 KB
/
fd1d_advection_lax_wendroff.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
<html>
<head>
<title>
FD1D_ADVECTION_LAX_WENDROFF - Finite Difference Method, 1D Advection Equation, Lax-Wendroff Method
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FD1D_ADVECTION_LAX_WENDROFF <br>
Finite Difference Method<br>
1D Advection Equation<br>
Lax-Wendroff Method
</h1>
<hr>
<p>
<b>FD1D_ADVECTION_LAX_WENDROFF</b>
is a C++ program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the Lax-Wendroff method for the time derivative,
writing graphics files for processing by gnuplot.
</p>
<p>
The Lax-Wendroff method is a modification to the Lax method with improved accuracy.
</p>
<p>
We solve the constant-velocity advection equation in 1D,
<pre>
du/dt = - c du/dx
</pre>
over the interval:
<pre>
0.0 <= x <= 1.0
</pre>
with periodic boundary conditions, and
with a given initial condition
<pre>
u(0,x) = (10x-4)^2 (6-10x)^2 for 0.4 <= x <= 0.6
= 0 elsewhere.
</pre>
</p>
<p>
For our simple case, the advection velocity is constant
in time and space. Therefore, (given our periodic boundary conditions),
the solution should simply move smoothly from left to right, returning
on the left again. While the Lax method produces an artificial smearing
of the solution because of an artificial viscosity effect, this behavior
is much reduced for the Lax-Wendroff method.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FD1D_ADVECTION_LAX_WENDROFF</b> is available in
<a href = "../../c_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">a C version</a> and
<a href = "../../cpp_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">a C++ version</a> and
<a href = "../../f77_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">a MATLAB version</a> and
<a href = "../../py_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">a Python version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">
FD1D_ADVECTION_FTCS</a>,
a C++ program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the forward time, centered space (FTCS)
difference method.
</p>
<p>
<a href = "../../cpp_src/fd1d_advection_lax/fd1d_advection_lax.html">
FD1D_ADVECTION_LAX</a>,
a C++ program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the Lax method.
</p>
<p>
<a href = "../../cpp_src/fd1d_burgers_lax/fd1d_burgers_lax.html">
FD1D_BURGERS_LAX</a>,
a C++ program which
applies the finite difference method and the Lax-Wendroff method
to solve the non-viscous time-dependent Burgers equation
in one spatial dimension.
</p>
<p>
<a href = "../../cpp_src/fd1d_bvp/fd1d_bvp.html">
FD1D_BVP</a>,
a C++ program which
applies the finite difference method
to a two point boundary value problem in one spatial dimension.
</p>
<p>
<a href = "../../cpp_src/fd1d_heat_explicit/fd1d_heat_explicit.html">
FD1D_HEAT_EXPLICIT</a>,
a C++ program which
uses the finite difference method and explicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../cpp_src/fd1d_heat_implicit/fd1d_heat_implicit.html">
FD1D_HEAT_IMPLICIT</a>,
a C++ program which
uses the finite difference method and implicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../cpp_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a C++ program which
uses the finite difference method to solve the steady (time independent)
heat equation in 1D.
</p>
<p>
<a href = "../../cpp_src/fd1d_predator_prey/fd1d_predator_prey.html">
FD1D_PREDATOR_PREY</a>,
a C++ program which
implements a finite difference algorithm for predator-prey system
with spatial variation in 1D.
</p>
<p>
<a href = "../../cpp_src/fd1d_wave/fd1d_wave.html">
FD1D_WAVE</a>,
a C++ program which
applies the finite difference method to solve the time-dependent
wave equation utt = c * uxx in one spatial dimension.
</p>
<p>
<a href = "../../cpp_src/gnuplot/gnuplot.html">
GNUPLOT</a>,
C++ programs which
illustrate how a program can write data and command files
so that gnuplot can create plots of the program results.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
George Lindfield, John Penny,<br>
Numerical Methods Using MATLAB,<br>
Second Edition,<br>
Prentice Hall, 1999,<br>
ISBN: 0-13-012641-1,<br>
LC: QA297.P45.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_advection_lax_wendroff.cpp">fd1d_advection_lax_wendroff.cpp</a>, the source code.
</li>
<li>
<a href = "fd1d_advection_lax_wendroff.sh">fd1d_advection_lax_wendroff.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_advection_lax_wendroff_output.txt">fd1d_advection_lax_wendroff_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
Graphical output for this program was created using GNUPLOT. Data at selected
time steps was written to a "data" file, and the appropriate GNUPLOT commands were
written to a "command" file. The plot can be created by the command
<pre>
gnuplot < advection_commands.txt
</pre>
<ul>
<li>
<a href = "advection_data.txt">advection_data.txt</a>,
the solution data.
</li>
<li>
<a href = "advection_commands.txt">advection_commands.txt</a>,
gnuplot commands to plot the data.
</li>
<li>
<a href = "advection_lax_wendroff.png">advection_lax_wendroff.png</a>,
a (not very satisfactory) image of the solution.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>FD1D_ADVECTION_LAX_WENDROFF</b> solves the advection equation using the Lax-Wendroff method.
</li>
<li>
<b>I4_MODP</b> returns the nonnegative remainder of I4 division.
</li>
<li>
<b>I4_WRAP</b> forces an I4 to lie between given limits by wrapping.
</li>
<li>
<b>INITIAL_CONDITION</b> sets the initial condition.
</li>
<li>
<b>R8VEC_LINSPACE</b> creates a vector of linearly spaced values.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 27 January 2013.
</i>
<!-- John Burkardt -->
</body>
</html>