forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircle_integrals.html
309 lines (265 loc) · 8.67 KB
/
circle_integrals.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
<html>
<head>
<title>
CIRCLE_INTEGRALS - Integrals Along the Circumference of the Unit Circle in 2D
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
CIRCLE_INTEGRALS <br> Integrals Along the Circumference of the Unit Circle in 2D
</h1>
<hr>
<p>
<b>CIRCLE_INTEGRALS</b>
is a C++ library which
returns the exact value of the integral of any monomial
along the circumference of the unit circle in 2D.
</p>
<p>
The circumference of the unit circle in 2D is defined by
<pre>
x^2 + y^2 = 1
</pre>
</p>
<p>
The integrands are all of the form
<pre>
f(x,y) = x^e1 * y^e2
</pre>
where the exponents are nonnegative integers.
If any exponent is an odd integer, the integral will be zero.
Thus, the "interesting" results occur when all exponents are even.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>CIRCLE_INTEGRALS</b> is available in
<a href = "../../c_src/circle_integrals/circle_integrals.html">a C version</a> and
<a href = "../../cpp_src/circle_integrals/circle_integrals.html">a C++ version</a> and
<a href = "../../f77_src/circle_integrals/circle_integrals.html">a FORTRAN77 version</a> and
<a href = "../../f_src/circle_integrals/circle_integrals.html">a FORTRAN90 version</a> and
<a href = "../../m_src/circle_integrals/circle_integrals.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/ball_integrals/ball_integrals.html">
BALL_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit ball in 3D.
</p>
<p>
<a href = "../../cpp_src/circle_monte_carlo/circle_monte_carlo.html">
CIRCLE_MONTE_CARLO</a>,
a C++ library which
uses the Monte Carlo method to estimate the integral of a function
over the circumference of the unit circle in 2D.
</p>
<p>
<a href = "../../cpp_src/circle_rule/circle_rule.html">
CIRCLE_RULE</a>,
a C++ library which
computes quadrature rules for the unit circle in 2D, that is,
the circumference of the circle of radius 1 and center (0,0).
</p>
<p>
<a href = "../../cpp_src/cube_integrals/cube_integrals.html">
CUBE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit cube in 3D.
</p>
<p>
<a href = "../../cpp_src/disk_integrals/disk_integrals.html">
DISK_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit disk in 2D.
</p>
<p>
<a href = "../../cpp_src/hyperball_integrals/hyperball_integrals.html">
HYPERBALL_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit hyperball in M dimensions.
</p>
<p>
<a href = "../../cpp_src/hypercube_integrals/hypercube_integrals.html">
HYPERCUBE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit hypercube in M dimensions.
</p>
<p>
<a href = "../../cpp_src/hypersphere_integrals/hypersphere_integrals.html">
HYPERSPHERE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the surface of the unit hypersphere in M dimensions.
</p>
<p>
<a href = "../../cpp_src/line_integrals/line_integrals.html">
LINE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the length of the unit line in 1D.
</p>
<p>
<a href = "../../cpp_src/polygon_integrals/polygon_integrals.html">
POLYGON_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of a polygon in 2D.
</p>
<p>
<a href = "../../cpp_src/pyramid_integrals/pyramid_integrals.html">
PYRAMID_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit pyramid in 3D.
</p>
<p>
<a href = "../../cpp_src/simplex_integrals/simplex_integrals.html">
SIMPLEX_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit simplex in M dimensions.
</p>
<p>
<a href = "../../cpp_src/sphere_integrals/sphere_integrals.html">
SPHERE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the surface of the unit sphere in 3D.
</p>
<p>
<a href = "../../cpp_src/square_integrals/square_integrals.html">
SQUARE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit square in 2D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_integrals/tetrahedron_integrals.html">
TETRAHEDRON_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/triangle_integrals/triangle_integrals.html">
TRIANGLE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/wedge_integrals/wedge_integrals.html">
WEDGE_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit wedge in 3D.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Gerald Folland,<br>
How to Integrate a Polynomial Over a Sphere,<br>
American Mathematical Monthly,<br>
Volume 108, Number 5, May 2001, pages 446-448.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "circle_integrals.cpp">circle_integrals.cpp</a>, the source code.
</li>
<li>
<a href = "circle_integrals.hpp">circle_integrals.hpp</a>, the include file.
</li>
<li>
<a href = "circle_integrals.sh">circle_integrals.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "circle_integrals_prb.cpp">circle_integrals_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "circle_integrals_prb.sh">circle_integrals_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "circle_integrals_prb_output.txt">circle_integrals_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>CIRCLE01_LENGTH:</b> length of the circumference of the unit circle in 2D.
</li>
<li>
<b>CIRCLE01_MONOMIAL_INTEGRAL:</b> integral on circumference of unit circle in 2D.
</li>
<li>
<b>CIRCLE01_SAMPLE</b> samples the circumference of the unit circle in 2D.
</li>
<li>
<b>I4VEC_UNIFORM_AB</b> returns a scaled pseudorandom I4VEC.
</li>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
<li>
<b>R8_GAMMA</b> evaluates Gamma(X) for a real argument.
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 12 January 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>