-
Notifications
You must be signed in to change notification settings - Fork 630
/
Copy pathcalc_inception.py
executable file
·130 lines (97 loc) · 3.91 KB
/
calc_inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import pickle
import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.models import inception_v3, Inception3
import numpy as np
from tqdm import tqdm
from inception import InceptionV3
from dataset import MultiResolutionDataset
class Inception3Feature(Inception3):
def forward(self, x):
if x.shape[2] != 299 or x.shape[3] != 299:
x = F.interpolate(x, size=(299, 299), mode="bilinear", align_corners=True)
x = self.Conv2d_1a_3x3(x) # 299 x 299 x 3
x = self.Conv2d_2a_3x3(x) # 149 x 149 x 32
x = self.Conv2d_2b_3x3(x) # 147 x 147 x 32
x = F.max_pool2d(x, kernel_size=3, stride=2) # 147 x 147 x 64
x = self.Conv2d_3b_1x1(x) # 73 x 73 x 64
x = self.Conv2d_4a_3x3(x) # 73 x 73 x 80
x = F.max_pool2d(x, kernel_size=3, stride=2) # 71 x 71 x 192
x = self.Mixed_5b(x) # 35 x 35 x 192
x = self.Mixed_5c(x) # 35 x 35 x 256
x = self.Mixed_5d(x) # 35 x 35 x 288
x = self.Mixed_6a(x) # 35 x 35 x 288
x = self.Mixed_6b(x) # 17 x 17 x 768
x = self.Mixed_6c(x) # 17 x 17 x 768
x = self.Mixed_6d(x) # 17 x 17 x 768
x = self.Mixed_6e(x) # 17 x 17 x 768
x = self.Mixed_7a(x) # 17 x 17 x 768
x = self.Mixed_7b(x) # 8 x 8 x 1280
x = self.Mixed_7c(x) # 8 x 8 x 2048
x = F.avg_pool2d(x, kernel_size=8) # 8 x 8 x 2048
return x.view(x.shape[0], x.shape[1]) # 1 x 1 x 2048
def load_patched_inception_v3():
# inception = inception_v3(pretrained=True)
# inception_feat = Inception3Feature()
# inception_feat.load_state_dict(inception.state_dict())
inception_feat = InceptionV3([3], normalize_input=False)
return inception_feat
@torch.no_grad()
def extract_features(loader, inception, device):
pbar = tqdm(loader)
feature_list = []
for img in pbar:
img = img.to(device)
feature = inception(img)[0].view(img.shape[0], -1)
feature_list.append(feature.to("cpu"))
features = torch.cat(feature_list, 0)
return features
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(
description="Calculate Inception v3 features for datasets"
)
parser.add_argument(
"--size",
type=int,
default=256,
help="image sizes used for embedding calculation",
)
parser.add_argument(
"--batch", default=64, type=int, help="batch size for inception networks"
)
parser.add_argument(
"--n_sample",
type=int,
default=50000,
help="number of samples used for embedding calculation",
)
parser.add_argument(
"--flip", action="store_true", help="apply random flipping to real images"
)
parser.add_argument("path", metavar="PATH", help="path to datset lmdb file")
args = parser.parse_args()
inception = load_patched_inception_v3()
inception = nn.DataParallel(inception).eval().to(device)
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
dset = MultiResolutionDataset(args.path, transform=transform, resolution=args.size)
loader = DataLoader(dset, batch_size=args.batch, num_workers=4)
features = extract_features(loader, inception, device).numpy()
features = features[: args.n_sample]
print(f"extracted {features.shape[0]} features")
mean = np.mean(features, 0)
cov = np.cov(features, rowvar=False)
name = os.path.splitext(os.path.basename(args.path))[0]
with open(f"inception_{name}.pkl", "wb") as f:
pickle.dump({"mean": mean, "cov": cov, "size": args.size, "path": args.path}, f)