Skip to content

ros-industrial-consortium/snp_automate_2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

4f6298a · Aug 19, 2024

History

78 Commits
Aug 19, 2024
Aug 15, 2024
Aug 15, 2024
Aug 19, 2024
Apr 26, 2024
Aug 19, 2024
Aug 15, 2024
Aug 15, 2024
Aug 15, 2024
Mar 2, 2021
Sep 15, 2021
Sep 15, 2021
Apr 1, 2021
Apr 26, 2024
Aug 15, 2024
Apr 26, 2024
Mar 18, 2024
Aug 15, 2024
Aug 15, 2024

Repository files navigation

SNP Implementation at Automate 2023

This demo uses a Motoman HC10 mounted on a table with an Intel RealSense camera to reconstruct the surface of an arbitrary part and generate motion plans for polishing parts in a raster pattern

SNP Automate 2023

Run

Run the application from a pre-built Docker image using the following commands:

On hardware

cd docker
docker compose up

In simulation

First create the file docker-compose.override.yml in the docker directory with the following content:

services:
  snp_automate_2023:
    environment:
      SNP_SIM_ROBOT: true
      SNP_SIM_VISION: true

Then bring up the application using docker-compose

cd docker
docker compose up

Local build

  1. Follow the build setup instructions for the main repository
  2. Clone the application-specific ROS2 dependencies into the same workspace
    cd <snp_workspace>
    vcs import src < snp_automate_2023/dependencies.repos
    
  3. Build
    colcon build --cmake-args -DTESSERACT_BUILD_FCL=OFF
    
  4. Run the application
    cd <snp_workspace>
    source install/setup.bash
    ros2 launch snp_automate_2023 start.launch.xml sim_robot:=<true|false> sim_vision:=<true|false>