forked from Nemzy/video_generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
27 lines (21 loc) · 1.26 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import tensorflow as tf
def conv2d(x, in_channels, output_channels, name, reuse = False):
'''Convolutional Layer'''
with tf.variable_scope(name, reuse = reuse):
w = tf.get_variable('w', [5, 5, in_channels, output_channels], initializer = tf.truncated_normal_initializer(stddev = 0.1))
b = tf.get_variable('b', [output_channels], initializer = tf.constant_initializer(0.1))
conv = tf.nn.conv2d(x, w, strides = [1,2,2,1], padding = 'SAME') + b
return conv
def deconv2d(x, output_shape, name, reuse = False):
'''Deconvolutional Layer'''
with tf.variable_scope(name, reuse = reuse):
w = tf.get_variable('w', [5, 5, output_shape[-1], int(x.get_shape()[-1])], initializer = tf.truncated_normal_initializer(stddev = 0.1))
b = tf.get_variable('b', [output_shape[-1]], initializer = tf.constant_initializer(0.1))
deconv = tf.nn.conv2d_transpose(x, w, output_shape = output_shape, strides = [1,2,2,1]) + b
return deconv
def dense(x, input_dim, output_dim, name, reuse = False):
'''Fully-connected Layer'''
with tf.variable_scope(name, reuse = reuse):
w = tf.get_variable('w', [input_dim, output_dim], initializer = tf.truncated_normal_initializer(stddev = 0.1))
b = tf.get_variable('b', [output_dim], initializer = tf.constant_initializer(0.1))
return tf.matmul(x, w) + b