forked from rkjones4/GANGogh
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathwikiart_genre.py
153 lines (126 loc) · 4.13 KB
/
wikiart_genre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
""" Creates batches of images to feed into the training network conditioned by genre, uses upsampling when creating batches to account for uneven distributuions """
import numpy as np
import imageio
import time
import random
import os
from pathlib import Path
from PIL import Image
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import settings
# Set the dimension of images you want to be passed in to the network
DIM = 64
# Set your own path to images
src_img_path = os.path.normpath(settings.RESIZED_IMAGES_PATH)
# This dictionary should be updated to hold the absolute number of images associated with each genre used during training
styles = {
"abstract": 14794,
"animal-painting": 1319,
"cityscape": 5833,
"figurative": 3335,
"flower-painting": 1260,
"genre-painting": 14881,
"landscape": 14893,
"marina": 1199,
"mythological-painting": 1670,
"nude-painting-nu": 2276,
"portrait": 14496,
"religious-painting": 7915,
"still-life": 2314,
"symbolic-painting": 2454,
}
styleNum = {
"abstract": 0,
"animal-painting": 1,
"cityscape": 2,
"figurative": 3,
"flower-painting": 4,
"genre-painting": 5,
"landscape": 6,
"marina": 7,
"mythological-painting": 8,
"nude-painting-nu": 9,
"portrait": 10,
"religious-painting": 11,
"still-life": 12,
"symbolic-painting": 13,
}
curPos = {
"abstract": 0,
"animal-painting": 0,
"cityscape": 0,
"figurative": 0,
"flower-painting": 0,
"genre-painting": 0,
"landscape": 0,
"marina": 0,
"mythological-painting": 0,
"nude-painting-nu": 0,
"portrait": 0,
"religious-painting": 0,
"still-life": 0,
"symbolic-painting": 0,
}
testNums = {}
trainNums = {}
# Generate test set of images made up of 1/20 of the images (per genre)
for k, v in styles.items():
# put a twentieth of paintings in here
nums = range(v)
random.shuffle(list(nums))
testNums[k] = nums[0 : v // 20]
trainNums[k] = nums[v // 20 :]
def inf_gen(gen):
while True:
for (images, labels) in gen():
yield images, labels
def make_generator(files, batch_size, n_classes):
if batch_size % n_classes != 0:
raise ValueError(
"Batch size {} must be divisible by num classes {}".format(batch_size, n_classes)
)
class_batch = batch_size // n_classes
generators = []
def get_epoch():
while True:
images = np.zeros((batch_size, 3, DIM, DIM), dtype="int32")
labels = np.zeros((batch_size, n_classes))
n = 0
for style in styles:
styleLabel = styleNum[style]
curr = curPos[style]
for _ in range(class_batch):
if curr == styles[style]:
curr = 0
random.shuffle(list(files[style]))
img_path = Path(src_img_path, style, str(curr) + ".png")
image = Image.open(img_path).convert(mode="RGB")
image = np.asarray(image)
images[n % batch_size] = image.transpose(2, 0, 1)
labels[n % batch_size, int(styleLabel)] = 1
n += 1
curr += 1
curPos[style] = curr
# randomize things but keep relationship between a conditioning vector and its associated image
rng_state = np.random.get_state()
np.random.shuffle(images)
np.random.set_state(rng_state)
np.random.shuffle(labels)
yield (images, labels)
return get_epoch
def load(batch_size):
return (
make_generator(trainNums, batch_size, len(styles)),
make_generator(testNums, batch_size, len(styles)),
)
# Testing code to validate that the logic in generating batches is working properly and quickly
if __name__ == "__main__":
train_gen, valid_gen = load(100)
t0 = time.time()
for i, batch in enumerate(train_gen(), start=1):
a, b = batch
print("time ", str(time.time() - t0))
if i == 1000:
break
t0 = time.time()