-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaudio_splitter.py
128 lines (103 loc) · 5.57 KB
/
audio_splitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import logging
import os
import time
from typing import List
from dotenv import load_dotenv
from pydub import AudioSegment
from pydub.silence import split_on_silence
# Configs
load_dotenv()
MAX_CHUNK_SIZE_MB = int(os.getenv("MAX_CHUNK_SIZE_MB", 25))
MAX_CHUNK_DURATION_SEC = int(os.getenv("MAX_CHUNK_DURATION_SEC", 30))
INITIAL_MIN_SILENCE_LEN_MS = int(os.getenv("INITIAL_MIN_SILENCE_LEN_MS", 3000))
MIN_SILENCE_LEN_STEP_PERCENT = int(os.getenv("MIN_SILENCE_LEN_STEP", 0.1)) # 10% of initial min_silence_len
# Create a logger
logger = logging.getLogger()
logger.setLevel(logging.DEBUG) # set logger level
# Create a console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG) # set console handler level
# Create a formatter
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# Add formatter to both file and console handlers
console_handler.setFormatter(formatter)
# Add both handlers to the logger
logger.addHandler(console_handler)
class AudioChunksSplitter:
# Perhaps a better alternative: https://github.com/snakers4/silero-vad
# Example for silero-vad: https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb#scrollTo=QttWasy5hUd6
@staticmethod
def split_large_chunks(chunks: List[AudioSegment], max_duration: int, min_silence_len: int) -> List[AudioSegment]:
"""
Split large chunks into smaller chunks based on silence until all chunks are less than max_duration
"""
logging.info(f"Splitting {len(chunks)} chunks with min_silence_len={min_silence_len}ms...")
if min_silence_len < 0:
logging.info("We can't split on silence, splitting straight...")
return AudioChunksSplitter.split_straight(chunks, max_duration)
elif min_silence_len == 0:
min_silence_len = 30
small_chunks = []
for chunk in chunks:
if chunk.duration_seconds > max_duration:
small_chunks.extend(
split_on_silence(chunk, min_silence_len, silence_thresh=chunk.dBFS - 14, keep_silence=1000))
else:
small_chunks.append(chunk)
logging.info(f"Split large chunks into {len(small_chunks)} chunks")
largest_chunk = max(small_chunks, key=lambda x: x.duration_seconds)
logging.info(f"Largest chunk duration: {largest_chunk.duration_seconds}")
# check if any chunk has duration greater than max_duration and call split_large_chunks recursively
if largest_chunk.duration_seconds > max_duration:
new_min_silence_len = min_silence_len - MIN_SILENCE_LEN_STEP_PERCENT * min_silence_len
return AudioChunksSplitter.split_large_chunks(small_chunks, max_duration, new_min_silence_len)
return small_chunks
@staticmethod
def load_and_chunk_audio(file_path: str) -> List[AudioSegment]:
logging.info("Loading audio file...")
start_time = time.time()
audio = AudioSegment.from_file(file_path)
logging.info(f"Audio file loaded in {time.time() - start_time:.2f} seconds")
logging.info(f"Audio duration: {audio.duration_seconds} seconds")
# if audio duration is less than max_duration, return the audio as is
if audio.duration_seconds <= MAX_CHUNK_DURATION_SEC:
logging.info("Audio duration is less than max_duration. No need to split.")
return [audio]
logging.info("Splitting audio on silence...")
start_time = time.time()
# Alternative: https://librosa.org/doc/0.10.2/generated/librosa.effects.split.html
chunks = AudioChunksSplitter.split_large_chunks([audio], MAX_CHUNK_DURATION_SEC, INITIAL_MIN_SILENCE_LEN_MS)
logging.info(f"Audio split into {len(chunks)} chunks in {time.time() - start_time:.2f} seconds")
logging.info("Merging chunks...")
start_time = time.time()
merged_chunks = []
current_chunk = AudioSegment.empty()
for chunk in chunks:
if (len(current_chunk.raw_data) + len(chunk.raw_data) <= MAX_CHUNK_SIZE_MB * 1024 * 1024
and current_chunk.duration_seconds + chunk.duration_seconds <= MAX_CHUNK_DURATION_SEC):
current_chunk += chunk
else:
if current_chunk:
merged_chunks.append(current_chunk)
current_chunk = chunk
if current_chunk:
merged_chunks.append(current_chunk)
logging.info(f"Merged into {len(merged_chunks)} chunks in {time.time() - start_time:.2f} seconds")
return merged_chunks
@staticmethod
def split_straight(chunks: List[AudioSegment], max_duration: int) -> List[AudioSegment]:
"""
Strictly split chunks into smaller chunks based on max_duration
"""
logging.info(f"Splitting {len(chunks)} chunks straight into {max_duration} seconds...")
start_time = time.time()
small_chunks = []
for chunk in chunks:
if chunk.duration_seconds > max_duration:
small_chunks.extend(chunk[:max_duration * 1000].split_to_mono())
else:
small_chunks.append(chunk)
logging.info(f"Split into {len(small_chunks)} chunks in {time.time() - start_time:.2f} seconds")
return small_chunks
# Speaker diarization and timing out of the box are available in WhisperX: https://github.com/m-bain/whisperX
# LangChain implementation: https://github.com/langchain-ai/langchain/blob/c03899159050d33bbc199e415cf12cb933efd0fb/libs/community/langchain_community/document_loaders/parsers/audio.py#L117