forked from AngusMonroe/BLSTM-CRF-NER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·246 lines (211 loc) · 10.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.autograd as autograd
from torch.autograd import Variable
from utils import *
START_TAG = '<START>'
STOP_TAG = '<STOP>'
def to_scalar(var):
return var.view(-1).data.tolist()[0]
def argmax(vec):
_, idx = torch.max(vec, 1)
return to_scalar(idx)
def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
tensor = torch.LongTensor(idxs)
return Variable(tensor)
def log_sum_exp(vec):
# vec 2D: 1 * tagset_size
max_score = vec[0, argmax(vec)]
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
return max_score + \
torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim, char_lstm_dim=25,
char_to_ix=None, pre_word_embeds=None, char_embedding_dim=25, use_gpu=False,
n_cap=None, cap_embedding_dim=None, use_crf=True, char_mode='CNN'):
super(BiLSTM_CRF, self).__init__()
self.use_gpu = use_gpu
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag_to_ix = tag_to_ix
self.n_cap = n_cap
self.cap_embedding_dim = cap_embedding_dim
self.use_crf = use_crf
self.tagset_size = len(tag_to_ix)
self.out_channels = char_lstm_dim
self.char_mode = char_mode
print(('char_mode: %s, out_channels: %d, hidden_dim: %d, ' % (char_mode, char_lstm_dim, hidden_dim)))
if self.n_cap and self.cap_embedding_dim:
self.cap_embeds = nn.Embedding(self.n_cap, self.cap_embedding_dim)
init_embedding(self.cap_embeds.weight)
if char_embedding_dim is not None:
self.char_lstm_dim = char_lstm_dim
self.char_embeds = nn.Embedding(len(char_to_ix), char_embedding_dim)
init_embedding(self.char_embeds.weight)
if self.char_mode == 'LSTM':
self.char_lstm = nn.LSTM(char_embedding_dim, char_lstm_dim, num_layers=1, bidirectional=True)
init_lstm(self.char_lstm)
if self.char_mode == 'CNN':
self.char_cnn3 = nn.Conv2d(in_channels=1, out_channels=self.out_channels, kernel_size=(3, char_embedding_dim), padding=(2,0))
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
if pre_word_embeds is not None:
self.pre_word_embeds = True
self.word_embeds.weight = nn.Parameter(torch.FloatTensor(pre_word_embeds))
else:
self.pre_word_embeds = False
self.dropout = nn.Dropout(0.5)
if self.n_cap and self.cap_embedding_dim:
if self.char_mode == 'LSTM':
self.lstm = nn.LSTM(embedding_dim+char_lstm_dim*2+cap_embedding_dim, hidden_dim, bidirectional=True)
if self.char_mode == 'CNN':
self.lstm = nn.LSTM(embedding_dim+self.out_channels+cap_embedding_dim, hidden_dim, bidirectional=True)
else:
if self.char_mode == 'LSTM':
self.lstm = nn.LSTM(embedding_dim+char_lstm_dim*2, hidden_dim, bidirectional=True)
if self.char_mode == 'CNN':
self.lstm = nn.LSTM(embedding_dim+self.out_channels, hidden_dim, bidirectional=True)
init_lstm(self.lstm)
self.hw_trans = nn.Linear(self.out_channels, self.out_channels)
self.hw_gate = nn.Linear(self.out_channels, self.out_channels)
self.h2_h1 = nn.Linear(hidden_dim*2, hidden_dim)
self.tanh = nn.Tanh()
self.hidden2tag = nn.Linear(hidden_dim*2, self.tagset_size)
init_linear(self.h2_h1)
init_linear(self.hidden2tag)
init_linear(self.hw_gate)
init_linear(self.hw_trans)
if self.use_crf:
self.transitions = nn.Parameter(
torch.zeros(self.tagset_size, self.tagset_size))
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
def _score_sentence(self, feats, tags):
# tags is ground_truth, a list of ints, length is len(sentence)
# feats is a 2D tensor, len(sentence) * tagset_size
r = torch.LongTensor(list(range(feats.size()[0])))
if self.use_gpu:
r = r.cuda()
pad_start_tags = torch.cat([torch.cuda.LongTensor([self.tag_to_ix[START_TAG]]), tags])
pad_stop_tags = torch.cat([tags, torch.cuda.LongTensor([self.tag_to_ix[STOP_TAG]])])
else:
pad_start_tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags])
pad_stop_tags = torch.cat([tags, torch.LongTensor([self.tag_to_ix[STOP_TAG]])])
score = torch.sum(self.transitions[pad_stop_tags, pad_start_tags]) + torch.sum(feats[r, tags])
return score
def _get_lstm_features(self, sentence, chars2, caps, chars2_length, d):
if self.char_mode == 'LSTM':
# self.char_lstm_hidden = self.init_lstm_hidden(dim=self.char_lstm_dim, bidirection=True, batchsize=chars2.size(0))
chars_embeds = self.char_embeds(chars2).transpose(0, 1)
packed = torch.nn.utils.rnn.pack_padded_sequence(chars_embeds, chars2_length)
lstm_out, _ = self.char_lstm(packed)
outputs, output_lengths = torch.nn.utils.rnn.pad_packed_sequence(lstm_out)
outputs = outputs.transpose(0, 1)
chars_embeds_temp = Variable(torch.FloatTensor(torch.zeros((outputs.size(0), outputs.size(2)))))
if self.use_gpu:
chars_embeds_temp = chars_embeds_temp.cuda()
for i, index in enumerate(output_lengths):
chars_embeds_temp[i] = torch.cat((outputs[i, index-1, :self.char_lstm_dim], outputs[i, 0, self.char_lstm_dim:]))
chars_embeds = chars_embeds_temp.clone()
for i in range(chars_embeds.size(0)):
chars_embeds[d[i]] = chars_embeds_temp[i]
if self.char_mode == 'CNN':
chars_embeds = self.char_embeds(chars2).unsqueeze(1)
chars_cnn_out3 = self.char_cnn3(chars_embeds)
chars_embeds = nn.functional.max_pool2d(chars_cnn_out3,
kernel_size=(chars_cnn_out3.size(2), 1)).view(chars_cnn_out3.size(0), self.out_channels)
# t = self.hw_gate(chars_embeds)
# g = nn.functional.sigmoid(t)
# h = nn.functional.relu(self.hw_trans(chars_embeds))
# chars_embeds = g * h + (1 - g) * chars_embeds
embeds = self.word_embeds(sentence)
if self.n_cap and self.cap_embedding_dim:
cap_embedding = self.cap_embeds(caps)
if self.n_cap and self.cap_embedding_dim:
embeds = torch.cat((embeds, chars_embeds, cap_embedding), 1)
else:
embeds = torch.cat((embeds, chars_embeds), 1)
embeds = embeds.unsqueeze(1)
embeds = self.dropout(embeds)
lstm_out, _ = self.lstm(embeds)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim*2)
lstm_out = self.dropout(lstm_out)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
def _forward_alg(self, feats):
# calculate in log domain
# feats is len(sentence) * tagset_size
# initialize alpha with a Tensor with values all equal to -10000.
init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.)
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
forward_var = autograd.Variable(init_alphas)
if self.use_gpu:
forward_var = forward_var.cuda()
for feat in feats:
emit_score = feat.view(-1, 1)
tag_var = forward_var + self.transitions + emit_score
max_tag_var, _ = torch.max(tag_var, dim=1)
tag_var = tag_var - max_tag_var.view(-1, 1)
forward_var = max_tag_var + torch.log(torch.sum(torch.exp(tag_var), dim=1)).view(1, -1)
terminal_var = (forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]).view(1, -1)
alpha = log_sum_exp(terminal_var)
# Z(x)
return alpha
def viterbi_decode(self, feats):
backpointers = []
# analogous to forward
init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
forward_var = Variable(init_vvars)
if self.use_gpu:
forward_var = forward_var.cuda()
for feat in feats:
next_tag_var = forward_var.view(1, -1).expand(self.tagset_size, self.tagset_size) + self.transitions
_, bptrs_t = torch.max(next_tag_var, dim=1)
bptrs_t = bptrs_t.squeeze().data.cpu().numpy()
next_tag_var = next_tag_var.data.cpu().numpy()
viterbivars_t = next_tag_var[list(range(len(bptrs_t))), bptrs_t]
viterbivars_t = Variable(torch.FloatTensor(viterbivars_t))
if self.use_gpu:
viterbivars_t = viterbivars_t.cuda()
forward_var = viterbivars_t + feat
backpointers.append(bptrs_t)
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
terminal_var.data[self.tag_to_ix[STOP_TAG]] = -10000.
terminal_var.data[self.tag_to_ix[START_TAG]] = -10000.
best_tag_id = argmax(terminal_var.unsqueeze(0))
path_score = terminal_var[best_tag_id]
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# print(best_path)
# print(self.tag_to_ix)
# print(START_TAG)
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG]
best_path.reverse()
# print(best_path)
# print(type(best_path))
return path_score, best_path
def neg_log_likelihood(self, sentence, tags, chars2, caps, chars2_length, d):
# sentence, tags is a list of ints
# features is a 2D tensor, len(sentence) * self.tagset_size
feats = self._get_lstm_features(sentence, chars2, caps, chars2_length, d)
if self.use_crf:
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
else:
tags = Variable(tags)
scores = nn.functional.cross_entropy(feats, tags)
return scores
def forward(self, sentence, chars, caps, chars2_length, d):
feats = self._get_lstm_features(sentence, chars, caps, chars2_length, d)
# viterbi to get tag_seq
if self.use_crf:
score, tag_seq = self.viterbi_decode(feats)
else:
score, tag_seq = torch.max(feats, 1)
tag_seq = list(tag_seq.cpu().data)
return score, tag_seq