-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcamera_and_NN2.py
executable file
·486 lines (383 loc) · 16.6 KB
/
camera_and_NN2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""This module contains the main Camera object for manipulating the information extracted from each drone
"""
import os
from ros_utilities import get_time_of_file
import numpy as np
import yaml
import json
import cPickle as cpk
import tf
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
logger.addHandler(console_handler)
class Camera(object):
"""Encodes the timed view from a camera"""
# @staticmethod
# def load_from_folder(folder_data):
# intrinsic_param_path_m1 = os.path.join(folder_data, 'caminfo')
# extrinsic_param_path_m1 = os.path.join(folder_data, 'campose')
# img_path_m1 = os.path.join(folder_data, 'cropped_img') # this ideally should be the original images path
# roi_path_m1 = os.path.join(folder_data, 'roi')
# images = [f for f in os.listdir(img_path_m1) if os.path.isfile(os.path.join(img_path_m1, f))]
# mtimes = [os.path.splitext(os.path.basename(f))[0] for f in images]
# mtimes.sort()
# timestamps = [get_time_of_file(int(f)) for f in mtimes]
# intrinsic_files = dict((t, os.path.join(intrinsic_param_path_m1, m + '.txt')) for t, m in zip(timestamps, mtimes))
# extrinsic_files = dict((t, os.path.join(extrinsic_param_path_m1, m + '.txt')) for t, m in zip(timestamps, mtimes))
# image_files = dict((t, os.path.join(img_path_m1, m + '.png')) for t, m in zip(timestamps, mtimes))
# roi_files = dict((t, os.path.join(roi_path_m1, m + '.yml')) for t, m in zip(timestamps, mtimes))
# uav = Camera(basedir=folder_data,
# timestamps=timestamps,
# intrinsics=intrinsic_files,
# extrinsics=extrinsic_files,
# images=image_files,
# roi=roi_files)
# return uav
@staticmethod
def load_from_folder(folder_data):
img_path_m1 = os.path.join(folder_data, 'full_img') # this ideally should be the original images path
images = [f for f in os.listdir(img_path_m1) if os.path.isfile(os.path.join(img_path_m1, f))]
mtimes = [os.path.splitext(os.path.basename(f))[0] for f in images]
timestamps = [f for f in mtimes]
image_files = dict((t, os.path.join(img_path_m1, m + '.png')) for t, m in zip(timestamps, mtimes))
timestamps = np.load(os.path.join(folder_data,'timestamps.npy'))
fl = open(os.path.join(folder_data,'roi.pkl'),'r')
roi = cpk.load(fl)
fl.close()
# fl = open(os.path.join(folder_data,'campose_raw.pkl'),'r')
fl = open(os.path.join(folder_data,'campose.pkl'),'r') # for online one, temporary
extrinsics = cpk.load(fl)
fl.close()
fl = open(os.path.join(folder_data,'caminfo.pkl'),'r')
intrinsics = cpk.load(fl)
fl.close()
uav = Camera(basedir=folder_data,
timestamps=timestamps,
intrinsics=intrinsics,
extrinsics=extrinsics,
images=image_files,
roi=roi)
return uav
def __init__(self,
basedir,
timestamps,
intrinsics,
extrinsics,
images,
roi):
self.basedir = basedir
self.timestamps = sorted(timestamps)
self.intrinsics = intrinsics
self.extrinsics = extrinsics
self.images = images
self.roi = roi
# self._max_timestamp = max(self.timestamps)
def get_closest_time_stamp(self, query_timestamp):
"""Returns the closest timestamp contained in this camera wrt. a query timestamp.
.. note::
The query is linear in complexity to the number of timestamps and is not efficient if
efficiency is needed.
"""
return min(self.timestamps, key=lambda x: abs(int(x) - int(query_timestamp)))
def get_intrinsic(self, timestamp=None):
"""Returns the intrincs of the camera at a specific time stamp
:param timestamp: the query timestamp
:returns: the intrinsic matrix at the specified timestamp
"""
return np.array(self.intrinsics['camera_matrix']['data']).reshape([3,3])
def get_extrinsic_and_cov(self, timestamp):
"""Returns the extrinsic of the camera at a giveen time stamp.
.. note:: the timestamp should be part of the timestamps of this camera, otherwise
a `KeyError` exception will be raised.
:param timestamp: the query timestamp as a datetime object
:returns: the extrincics matrix
"""
# # import ipdb; ipdb.set_trace()
# po = self.extrinsics[timestamp]['position']
# pos = np.array([po.x,po.y,po.z])
# ori = self.extrinsics[timestamp]['orientation']
# orient_quat = np.array([ori.x,ori.y,ori.z,ori.w])
# cov_mat = np.array(self.extrinsics[timestamp]['covariance']).reshape(6,6)
# # convert quaternion to homogeneous rotation matrix (4X4)
# orient = tf.transformations.quaternion_matrix(orient_quat)
# ext = orient
# # merge the rotation and translation
# ext[0:3, -1] = pos
# # return the inverse of this camera extrinsic matrix
# return np.linalg.inv(ext), cov_mat
return self.extrinsics[timestamp][0], self.extrinsics[timestamp][0] # for online one temporary
def get_frame(self, timestamp):
"""Returns the frame viewed by the camera at a given timestamp
"""
import cv2
return cv2.imread(self.images[timestamp])
def get_2D_points_using_ROI(roi, points, mode):
'''
This function calculates the 2D location of the joints in the complete image. It accepts the path of the yaml file containing ROI parameters and the joints location in ROI.
:param points: 2D coordinates of joints in ROI (2XN)
'''
x = roi['x'] # x coordinate of ROI in the full image
y = roi['y'] # y coordinate of ROI in the full image
if mode == 'full':
# points coordinates in full image
points[0, :] += x
points[1, :] += y
elif mode == 'cropped':
# points coordinates in cropped image
points[0, :] -= x
points[1, :] -= y
else:
raise Exception('wrong mode provided')
return points
class NN(object):
# @staticmethod
# def load_from_folder(folder_data,nn):
# name = nn
# vis_path = os.path.join(folder_data, 'vis')
# out_path = os.path.join(folder_data, 'cropped_img')
# out = [f for f in os.listdir(out_path) if os.path.isfile(os.path.join(out_path, f))]
# mtimes = [f.split('.')[0] for f in out]
# timestamps = [get_time_of_file(int(f)) for f in mtimes]
# if name == 'openpose':
# out_files = dict((t, os.path.join(out_path, m + '.json')) for t, m in zip(timestamps, mtimes))
# else:
# out_files = dict((t, os.path.join(out_path, m + '.png.npz')) for t, m in zip(timestamps, mtimes))
# vis_files = dict((t, os.path.join(vis_path, m + '.png')) for t, m in zip(timestamps, mtimes))
# tstamps_raw = dict((t, int(m)) for t, m in zip(timestamps, mtimes))
# network = NN(name = name,
# basedir=folder_data,
# timestamps=timestamps,
# tstamps_raw = tstamps_raw,
# out=out_files,
# vis=vis_files)
# return network
# def __init__(self,
# name,
# basedir,
# timestamps,
# tstamps_raw,
# out,
# vis):
# self.name = name
# self.basedir = basedir
# self.timestamps = set(timestamps)
# self.tstamps_raw = tstamps_raw
# self.out = out
# self.vis = vis
@staticmethod
def load_from_folder(folder_data,nn):
name = nn
vis_path = os.path.join(folder_data, 'vis')
out_path = os.path.join(folder_data, 'cropped_img')
out = [f for f in os.listdir(out_path) if os.path.isfile(os.path.join(out_path, f))]
mtimes = [f.split('.')[0] for f in out]
timestamps = [f for f in mtimes]
if name == 'openpose' or name == 'alphapose':
out_files = dict((t, os.path.join(out_path, m + '.json')) for t, m in zip(timestamps, mtimes))
else:
out_files = dict((t, os.path.join(out_path, m + '.png.npz')) for t, m in zip(timestamps, mtimes))
vis_files = dict((t, os.path.join(vis_path, m + '.png')) for t, m in zip(timestamps, mtimes))
network = NN(name = name,
basedir=folder_data,
timestamps=timestamps,
out=out_files,
vis=vis_files)
return network
def __init__(self,
name,
basedir,
timestamps,
out,
vis):
self.name = name
self.basedir = basedir
self.timestamps = sorted(timestamps)
self.out = out
self.vis = vis
# using nose as head
if self.name == 'openpose':
self.map2smpl = np.array([8,12,9,-1,13,10,-1,14,11,-1,19,22,1,-1,-1,0,5,2,6,3,7,4,-1,-1])
# using nose as head
if self.name == 'alphapose':
self.map2smpl = np.array([-1,11,8,-1,12,9,-1,13,10,-1,-1,-1,1,-1,-1,0,5,2,6,3,7,4,-1,-1])
def get_2d_joints_and_probs(self, timestamp, roi):
'''
If 2d points are required in cropped image, pass roi as None
'''
if self.name == 'deepcut':
k = np.load(self.out[timestamp])['pose']
if roi == None:
j2d = np.transpose(k[0:2,:])
else:
j2d = np.transpose(get_2D_points_using_ROI(roi,k[0:2,:],'full'))
prob = k[2,:]
elif self.name == 'hmr':
k = np.load(self.out[timestamp])['pose']
if roi == None:
j2d = np.transpose(k[1::-1, :14])
else:
j2d = np.transpose(get_2D_points_using_ROI(roi, k[1::-1, :14],'full'))
prob = 0.3*np.ones(14)
elif self.name == 'openpose':
try:
f = open(self.out[timestamp])
people = json.load(f)['people']
num_people = len(people)
except:
num_people = 0
if num_people > 0:
k = np.array(people[0]['pose_keypoints_2d']).reshape([25,3]).T
if roi == None:
j2d = np.transpose(k[0:2,self.map2smpl])
else:
j2d = np.transpose(get_2D_points_using_ROI(roi,k[0:2,self.map2smpl],'full'))
prob = k[2,self.map2smpl]
# points we are not using; make them and the prob as 0
j2d[self.map2smpl==-1,:] = 0
prob[self.map2smpl==-1] = 0
else:
j2d = np.zeros([24,2])
prob = np.zeros([24])
elif self.name == 'alphapose':
try:
f = open(self.out[timestamp])
people = json.load(f)['people']
num_people = len(people)
except:
num_people = 0
if num_people > 0:
k = np.array(people[0]['pose_keypoints_2d']).reshape([18,3]).T
if roi == None:
j2d = np.transpose(k[0:2,self.map2smpl])
else:
j2d = np.transpose(get_2D_points_using_ROI(roi,k[0:2,self.map2smpl],'full'))
prob = k[2,self.map2smpl]
# points we are not using; make them and the prob as 0
j2d[self.map2smpl==-1,:] = 0
prob[self.map2smpl==-1] = 0
else:
j2d = np.zeros([24,2])
prob = np.zeros([24])
return j2d, prob, num_people
def get_cov_j2d(self):
'''
'''
return np.stack([np.eye(2)]*14)
def get_viz(self,timestamp):
'''
'''
import cv2
return cv2.imread(self.vis[timestamp])
def process_cameras(data_root,camlist=None):
if camlist is None:
n_cams = len(os.listdir(os.path.join(data_root,'data')))
camlist = range(n_cams)
cams = []
for cam in camlist:
logger.debug('processing camera %s',cam)
cams.append(Camera.load_from_folder(os.path.join(data_root,'data',('machine_'+str(cam+1)))))
return cams
def process_NN(data_root,nn_name,camlist=None):
if camlist is None:
n_cams = len(os.listdir(os.path.join(data_root,'data')))
camlist = range(n_cams)
nn_root = os.path.join(data_root,nn_name+'_results')
nn = []
for cam in camlist:
logger.debug('processing camera %s for %s detector',cam,nn_name)
nn.append(NN.load_from_folder(os.path.join(nn_root, 'machine_'+(str(cam+1))),nn_name))
return nn
def get_nn_cam_params(data_root,nnList,start_in_cam1=0,n_files='all'):
n_cams = len(os.listdir(os.path.join(data_root,'data')))
cams = process_cameras(data_root,n_cams)
NNs= []
for nn in nnList:
NNs.append(process_NN(data_root,nn,n_cams))
if n_files == 'all':
timestamps = sorted(NNs[0][0].timestamps)[start_in_cam1:]
else:
timestamps = sorted(NNs[0][0].timestamps)[start_in_cam1:start_in_cam1+n_files]
J_names = {
0: 'Pelvis',
1: 'L_Hip',
4: 'L_Knee',
7: 'L_Ankle',
10: 'L_Foot',
2: 'R_Hip',
5: 'R_Knee',
8: 'R_Ankle',
11: 'R_Foot',
3: 'Spine1',
6: 'Spine2',
9: 'Spine3',
12: 'Neck',
15: 'Head',
13: 'L_Collar',
16: 'L_Shoulder',
18: 'L_Elbow',
20: 'L_Wrist',
22: 'L_Hand',
14: 'R_Collar',
17: 'R_Shoulder',
19: 'R_Elbow',
21: 'R_Wrist',
23: 'R_Hand',
}
# import ipdb; ipdb.set_trace()
intrinsics = np.zeros([n_cams,len(nn_list),3,3])
extrinsics = np.zeros([n_cams,len(nn_list),4,4])
covs = np.zeros([n_cams,len(nn_list),6,6])
joints2D = np.zeros([n_cams,len(nn_list),14,2])
probs = np.zeros([n_cams,len(nn_list),14])
cov_j2d = np.zeros([n_cams,len(nn_list),14,2,2])
for i in timestamps:
# logger.debug('processing timestamp %s',NNs[0][0].tstamps_raw[i])
logger.debug('processing timestamp %s',i)
intrinsics[:] = 0
extrinsics[:] = 0
covs[:] = 0
joints2D[:] = 0
cov_j2d[:] = 0
cam = 0
for nn in range(len(nn_list)):
intrinsics[cam,nn,:,:] = cams[cam].get_intrinsic(i)
extrinsics[cam,nn,:,:],covs[cam,nn,:,:] = cams[cam].get_extrinsic_and_cov(i)
joints2D[cam,nn,:,:], probs[cam,nn,:] = NNs[nn][cam].get_2d_joints_and_probs(i,roi_path = cams[cam].roi[i])
cov_j2d[cam,nn,:,:,:] = NNs[nn][cam].get_cov_j2d()
# t = [NNs[nn][cam].tstamps_raw[i]]
t = [i]
for cam in range(1,n_cams):
for nn in range(len(nn_list)):
j = cams[cam].get_closest_time_stamp(i)
intrinsics[cam,nn,:,:] = cams[cam].get_intrinsic(j)
extrinsics[cam,nn,:,:],covs[cam,nn,:,:] = cams[cam].get_extrinsic_and_cov(j)
joints2D[cam,nn,:,:], probs[cam,nn,:] = NNs[nn][cam].get_2d_joints_and_probs(j,roi_path = cams[cam].roi[j])
cov_j2d[cam,nn,:,:,:] = NNs[nn][cam].get_cov_j2d()
# t.append(NNs[nn][cam].tstamps_raw[j])
t.append(j)
return intrinsics,extrinsics,covs,joints2D,cov_j2d
def processCamsNNs(data_root,nnList,camlist=None):
assert type(nnList) == list
assert type(nnList[0]) == str
if camlist is None:
n_cams = len(os.listdir(os.path.join(data_root,'data')))
else:
n_cams = len(camlist)
n_NNs = len(nnList)
cams = process_cameras(data_root,camlist)
NNs= []
for nn in nnList:
NNs.append(process_NN(data_root,nn,camlist))
tstamps = []
camidx = []
for cam in range(n_cams):
# import ipdb;ipdb.set_trace()
# tstamps += NNs[0][cam].timestamps
# camidx += (cam + np.zeros(len(NNs[0][cam].timestamps),dtype=int)).tolist()
tstamps += cams[cam].timestamps
camidx += (cam + np.zeros(len(cams[cam].timestamps),dtype=int)).tolist()
tstamp2cam = zip(tstamps,camidx)
tstamp2cam = sorted(tstamp2cam, key = lambda x: int(x[0]))
return n_cams,n_NNs,cams,NNs,tstamp2cam