This repository has been archived by the owner on Dec 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathobject_counting.py
73 lines (58 loc) · 2.52 KB
/
object_counting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from roboflow import Roboflow
import os, sys, shutil
import json
import re
import glob
def count_objects(predictions, target_classes):
"""
Helper method to count the number of objects in an image for a given class
:param predictions: predictions returned from calling the predict method
:param target_class: str, target class for object count
:return: dictionary with target class and total count of occurrences in image
"""
object_counts = {x:0 for x in target_classes}
for prediction in predictions:
if prediction['class'] in target_classes:
object_counts[prediction['class']] += 1
elif prediction['class'] not in target_classes:
object_counts[prediction['class']] = 1
present_objects = object_counts.copy()
for i in object_counts:
if object_counts[i] < 1:
present_objects.pop(i)
return present_objects
## load config file for the models
with open(os.curdir + '/roboflow_config.json') as f:
config = json.load(f)
ROBOFLOW_API_KEY = config["ROBOFLOW_API_KEY"]
ROBOFLOW_WORKSPACE_ID = config["ROBOFLOW_WORKSPACE_ID"]
ROBOFLOW_MODEL_ID = config["ROBOFLOW_MODEL_ID"]
ROBOFLOW_VERSION_NUMBER = config["ROBOFLOW_VERSION_NUMBER"]
ROBOFLOW_SIZE = config["ROBOFLOW_SIZE"]
f.close()
# obtaining your API key: https://docs.roboflow.com/rest-api#obtaining-your-api-key
rf = Roboflow(api_key=ROBOFLOW_API_KEY)
workspace = rf.workspace(ROBOFLOW_WORKSPACE_ID)
project = workspace.project(ROBOFLOW_MODEL_ID)
version = project.version(ROBOFLOW_VERSION_NUMBER)
model = version.model
## creating a directory to add images we wish to infer
if os.path.exists(os.curdir + '/images_to_infer') is False:
os.mkdir(os.curdir + '/images_to_infer')
for data_ext in ['.jpg', '.jpeg', '.png']:
globbed_files = glob.glob(os.curdir + '/*' + data_ext)
for img_file in globbed_files:
shutil.move(img_file, os.curdir + '/images_to_infer')
file_location = f"{os.curdir + '/images_to_infer'}"
file_extension = ".jpg" # e.g jpg, jpeg, png
globbed_files = glob.glob(file_location + '/*' + file_extension)
## Uncomment the following line to print all class labels in the project
# print(project.classes)
for img_file in globbed_files:
# perform inference on the selected image
predictions = model.predict(img_file)
class_counts = count_objects(predictions, project.classes)
## Uncomment the following line to print the individual JSON Predictions
# print(predictions)
print('\n', "Class Counts:", '\n')
print(class_counts)