This repository has been archived by the owner on Dec 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmeasureObject.py
157 lines (108 loc) · 4.78 KB
/
measureObject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import cv2
import os, glob
import time
from roboflow import Roboflow
from numpy import mean
rf = Roboflow(api_key="API_KEY")
project = rf.workspace().project("measure-drill-holes")
model = project.version(5).model
# grab all the .jpg files
extention_images = ".jpg"
get_images = sorted(glob.glob('images/' + '*' + extention_images))
print(get_images)
# font
font = cv2.FONT_HERSHEY_COMPLEX_SMALL
org = (25, 25)
fontScale = 2
color = (255, 0, 0)
thickness = 2
box_color = (125, 0, 125)
box_thickness = 3
box_scale = 4
fpsArray = []
averageFPS = 0
pixel_ratio_array = []
averagePR = []
try:
for image_paths in get_images:
print(image_paths)
response = model.predict(image_paths, confidence=40, overlap=30).json()
frame = cv2.imread(image_paths)
t0 = time.time()
pixel_ratio_array = []
averagePR = []
for objects in response['predictions']:
# get prediction_name and confidence of each object
object_class = str(objects['class'])
# pull bbox coordinate points
x0 = objects['x'] - objects['width'] / 2
y0 = objects['y'] - objects['height'] / 2
x1 = objects['x'] + objects['width'] / 2
y1 = objects['y'] + objects['height'] / 2
box = (x0, y0, x1, y1)
box_start_point = (int(x0), int(y0))
box_end_point = (int(x1), int(y1))
if object_class == "Reference":
object_class_text_size = cv2.getTextSize(object_class, font, fontScale, thickness)
object_confidence = str(round(objects['confidence']*100 , 2)) + "%"
reference_inches = 1
reference_height = objects['height']
reference_width = objects['width']
pixel_to_inches = reference_height / reference_inches
pixel_ratio_array.append(pixel_to_inches)
averagePR = mean(pixel_ratio_array)
object_Inches = reference_height / averagePR
inches_ORG = (int(x0), int(y0-10))
frame = cv2.putText(frame, 'Inches: ' + str(object_Inches)[:5], inches_ORG, font, fontScale, (255,255,255), thickness, cv2.LINE_AA)
# draw ground truth boxes
frame = cv2.rectangle(frame, box_start_point, box_end_point, box_color, box_thickness)
ratio_weight = 1.10
averagePR = averagePR * ratio_weight
target_size = 0.15625
target_max = target_size * 1.10
target_min = target_size * 0.9
for objects in response['predictions']:
# get prediction_name and confidence of each object
object_class = str(objects['class'])
# pull bbox coordinate points
x0 = objects['x'] - objects['width'] / 2
y0 = objects['y'] - objects['height'] / 2
x1 = objects['x'] + objects['width'] / 2
y1 = objects['y'] + objects['height'] / 2
box = (x0, y0, x1, y1)
box_start_point = (int(x0), int(y0))
box_end_point = (int(x1), int(y1))
anomaly_detected = False
box_color = (0, 0, 255)
if object_class == "Drill Hole":
object_class_text_size = cv2.getTextSize(object_class, font, fontScale, thickness)
object_confidence = str(round(objects['confidence']*100 , 2)) + "%"
hole_inches = 1
hole_height = objects['height']
hole_height_THRESHOLD = hole_height * 1.25
hole_width = objects['width']
hole_width_THRESHOLD = hole_width * 1.25
object_Inches = hole_height / averagePR
if object_Inches < target_max and object_Inches > target_min:
box_color = (0, 200, 0)
if hole_height > hole_width_THRESHOLD:
anomaly_detected = True
box_color = (0, 200, 255)
if hole_width > hole_height_THRESHOLD:
anomaly_detected = True
box_color = (0, 200, 255)
inches_ORG = (int(x0), int(y0-10))
frame = cv2.putText(frame, 'Inches: ' + str(object_Inches)[:5], inches_ORG, font, fontScale, (255,255,255), thickness, cv2.LINE_AA)
# draw ground truth boxes
frame = cv2.rectangle(frame, box_start_point, box_end_point, box_color, box_thickness)
# timing: for benchmarking purposes
t = time.time()-t0
fpsArray.append(1/t)
averageFPS = mean(fpsArray)
averagePR = mean(pixel_ratio_array)
print("IMAGE CONFIRMED")
print("PIXEL RATIO: " + str(averagePR) + "\n")
cv2.imwrite(image_paths[:-3]+"prediction.jpg", frame)
except:
print("IMAGE ERROR")
pass