-
Notifications
You must be signed in to change notification settings - Fork 218
/
Copy pathparse_conceptual.py
215 lines (190 loc) · 7.72 KB
/
parse_conceptual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import clip
from torch.utils.data import DataLoader, Dataset
from PIL import Image
import pickle
from tqdm import tqdm
import os
import csv
import threading
import requests
import shutil
import PIL
import json
from typing import List, Tuple, Optional
import argparse
class ConceptualDS(Dataset):
@staticmethod
def get_all_data(data_root: str, suffix: str):
data = []
for i in range(16):
out_data_path = f"{data_root}/conceptual_{suffix}_{i:02d}.pkl"
if os.path.isfile(out_data_path):
with open(out_data_path, 'rb') as f:
raw_data = pickle.load(f)["info"]
data.append(raw_data)
return data
@staticmethod
def collect(data_root: str, suffix: str):
raw_data = ConceptualDS.get_all_data(data_root, suffix)
data = []
for thread_data in raw_data:
for item in thread_data:
data.append((item, thread_data[item]["caption"]))
return data
def __len__(self):
return len(self.data)
def __getitem__(self, item: int):
image_name, caption = self.data[item]
image_path = f"{self.data_root}/{self.suffix}/{image_name}.jpg"
is_error = False
image = self.dummy
try:
image = self.preprocess(Image.open(image_path))
except PIL.UnidentifiedImageError:
is_error = True
except OSError:
is_error = True
except BaseException:
is_error = True
if is_error:
return image, "", image_name
return image, caption, image_name
def __init__(self, data_root: str, preprocess, suffix: str):
self.suffix = suffix
self.data_root = data_root
self.data = self.collect(data_root, suffix)
self.preprocess = preprocess
self.dummy = torch.zeros(3, 288, 288)
def save_pickle(data, out_path: str, recover_index: Optional[int] = None):
if os.path.isfile(out_path) and recover_index is not None:
recover_path = f'{out_path[:-4]}_{recover_index:02d}.pkl'
shutil.copyfile(out_path, recover_path)
with open(out_path, 'wb') as f:
pickle.dump(data, f)
def get_image(url: str, out_path: str, timeout=10):
try:
r = requests.get(url, stream=True, timeout=timeout)
if r.status_code == 200:
with open(out_path, 'wb') as f:
r.raw.decode_content = True
shutil.copyfileobj(r.raw, f)
return True
return False
except BaseException:
return False
def thread(urls: List[Tuple[List[str], int]], thread_id: int, progress: tqdm, lock: Optional[threading.Lock],
suffix: str, conceptual_root: str):
out_root = f"{conceptual_root}/{suffix}"
out_data_path = f"{conceptual_root}/conceptual_{suffix}_{thread_id:02d}.pkl"
recover_index = 0
if os.path.isfile(out_data_path):
with open(out_data_path, 'rb') as f:
data = pickle.load(f)
parsed = data['parsed']
info = data['info']
else:
parsed = set()
info = {}
for i in range(0, len(urls)):
(caption, url), ind = urls[i]
name = f"{ind:08d}"
out_path = f"{out_root}/{name}.jpg"
if url not in parsed and not os.path.isfile(out_path) and get_image(url, out_path):
parsed.add(url)
info[name] = {"url": url, "caption": caption}
if lock is not None:
lock.acquire()
try:
progress.update()
finally:
lock.release()
else:
progress.update()
if (i + 1) % 1000 == 0:
save_pickle({'parsed': parsed, 'info': info}, out_data_path, recover_index)
recover_index = 1 - recover_index
save_pickle({'parsed': parsed, 'info': info}, out_data_path, 2)
return 0
def download_conceptual(conceptual_root: str, num_threads: int):
urls = []
for suffix in ("val", "train"):
if suffix == "train":
tsv_path = f"{conceptual_root}/Train_GCC-training.tsv"
else:
tsv_path = f"{conceptual_root}/Validation_GCC-1.1.0-Validation.tsv"
with open(tsv_path) as f:
read_tsv = csv.reader(f, delimiter="\t")
for i, row in enumerate(read_tsv):
urls.append((row, i))
progress = tqdm(total=len(urls))
if num_threads == 1:
thread(urls, 0, progress, None, suffix, conceptual_root)
else:
groups = []
threads = []
lock = threading.Lock()
split_size = len(urls) // num_threads
for i in range(num_threads):
if i < num_threads - 1:
groups.append(urls[i * split_size: (i + 1) * split_size])
else:
groups.append(urls[i * split_size:])
for i in range(num_threads):
threads.append(threading.Thread(target=thread, args=(groups[i], i, progress, lock, suffix, conceptual_root)))
for i in range(num_threads):
threads[i].start()
for i in range(num_threads):
threads[i].join()
progress.close()
def add_period(caption: str):
caption = caption.strip()
if caption[-1] != '.':
caption = caption + '.'
elif caption[-2] == ' ':
caption = caption[:-2] + '.'
return caption
def create_clip_embeddings(conceptual_root: str, clip_model_type: str):
all_embeddings = []
all_captions = []
for suffix in ("val", "train"):
device = torch.device("cuda:0")
clip_model, preprocess = clip.load(clip_model_type, device=device, jit=False)
clip_model = clip_model.eval()
ds = ConceptualDS(conceptual_root, preprocess, suffix)
dl = DataLoader(ds, batch_size=200, shuffle=False, num_workers=8, drop_last=False)
progress = tqdm(total=len(dl))
counter = 0
clip_model_name = clip_model_type.replace('/', '_')
out_data_path = f"{conceptual_root}/conceptual_clip_{clip_model_name}_{suffix}.pkl"
recover_index = 0
for i, data in enumerate(dl):
images, captions, image_names = data
images = images.to(device)
with torch.no_grad():
prefix = clip_model.encode_image(images).cpu()
is_valid = list(map(lambda x: x != "", captions))
mask = torch.tensor(is_valid)
all_embeddings.append(prefix[mask])
captions = [caption for j, caption in enumerate(captions) if is_valid[j]]
image_names = [image_name for j, image_name in enumerate(image_names) if is_valid[j]]
all_captions.extend([{"caption": add_period(caption), "clip_embedding": counter + j, "image_id": image_name}
for j, (caption, image_name) in enumerate(zip(captions, image_names))])
progress.update()
counter += len(captions)
if (i + 1) % 1000 == 0:
save_pickle({"clip_embedding": torch.cat(all_embeddings, dim=0), "captions": all_captions}, out_data_path, recover_index)
recover_index = 1 - recover_index
save_pickle({"clip_embedding": torch.cat(all_embeddings, dim=0), "captions": all_captions}, out_data_path, 2)
progress.close()
return 0
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', default='./data/conceptual')
parser.add_argument('--clip_model_type', default="ViT-B/32", choices=('RN50', 'RN101', 'RN50x4', 'ViT-B/32'))
parser.add_argument('--num_threads', type=int, default=16)
args = parser.parse_args()
download_conceptual(args.data_root, args.num_threads)
create_clip_embeddings(args.data_root, args.clip_model_type)
if __name__ == '__main__':
main()