-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
337 lines (287 loc) · 11.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
rlsn 2024
"""
import numpy as np
import torch
from torch.utils.data import Dataset
import glob, os
from PIL import Image
def read_image(image_file, meta=False):
if meta:
import SimpleITK as sitk
# Read the MetaImage file
image = sitk.ReadImage(image_file, imageIO="MetaImageIO")
image_array = sitk.GetArrayFromImage(image)
# print the image's dimensions
return image_array, np.array(image.GetOrigin()), np.array(image.GetSpacing())
else:
# npy file
re = np.load(image_file, allow_pickle=True).item()
return re["img"], re["origin"], re["space"]
def preprocess(datadir):
for i in range(10):
filenames = glob.glob(f"{datadir}/subset{i}/*mhd")
target_dir=f"{datadir}/subset{i}_npy"
os.makedirs(target_dir, exist_ok=True)
for fn in filenames:
print("processing",fn)
img, origin, space = read_image(fn,meta=True)
bn = os.path.basename(fn)
obj = dict(img=img,origin=origin,space=space)
np.save(f"{target_dir}/{bn[:-3]}npy",obj)
def read_csv(fn):
with open(fn,"r") as f:
lines = [l.strip().split(",") for l in f.readlines()]
return lines
def survey_dataset(datadir=".",npy=True):
data_split = dict()
for i in range(10):
if npy:
files = glob.glob(f"{datadir}/subset{i}_npy/*npy")
else:
files = glob.glob(f"{datadir}/subset{i}/*mhd")
data_split[i]=files
return data_split
def convert_loc(coord, origin, space):
displacement = np.array(coord[:3]).astype(float)-origin
loc = (displacement/space)[::-1]
return loc
def convert_radius(coord, space):
r = (float(coord[-1])/2/space)[::-1]
return r
def convert_bounding_box(coord, origin, space):
center = convert_loc(coord, origin, space)
rad = convert_radius(coord, space)
low = np.round(center-rad)
high = np.round(center+rad)
return low, high
def mark_bbox(img, bbox):
img_size = np.array(img.shape)
low, high = bbox[:3], bbox[3:]
low=np.clip((low*img_size).astype(int), 0, img_size-1)
high=np.clip((high*img_size).astype(int), 0, img_size-1)
bbox_imgs = np.zeros_like(img)
zl,xl,yl = low
zh,xh,yh = high
for z in range(zl,zh+1):
bbox_imgs[z,xl:xh+1,yl]=1
bbox_imgs[z,xl:xh+1,yh]=1
bbox_imgs[z,xl,yl:yh+1]=1
bbox_imgs[z,xh,yl:yh+1]=1
return bbox_imgs
def export_as_gif(filename, image_array, mark=None, frames_per_second=10, rubber_band=False):
images = []
image_array = (image_array-image_array.min())/(image_array.max()-image_array.min())
for i, arr in enumerate(image_array):
im = arr*255
im = np.repeat(im[:, :, np.newaxis], 3, axis=2)
if mark is not None:
im[:,:,0] += mark[i]*255
im = np.clip(im,0,255)
im = Image.fromarray(im.astype(np.uint8))
images.append(im)
if rubber_band:
images += images[2:-1][::-1]
images[0].save(
filename,
save_all=True,
append_images=images[1:],
duration=1000 // frames_per_second,
loop=0,
)
# compute mean and std
def compute_stats(dataset):
N = 0
sum = 0
for fn in dataset.filenames:
image,_,_=read_image(fn)
sum += np.sum(image)
N+=np.prod(image.shape)
mean = sum/N
N = 0
sum = 0
for fn in dataset.filenames:
image,_,_=read_image(fn)
sum += np.sum((image-mean)**2)
N+=np.prod(image.shape)
std = np.sqrt(sum/N)
return mean, std
def getUID(filename):
return os.path.basename(filename)[:-4]
def random_crop_3D(img, crop_size):
size = np.array(img.shape)
high = size-crop_size
start = [np.random.randint(0, high=high[0]),
np.random.randint(0, high=high[1]),
np.random.randint(0, high=high[2])]
return img[start[0]:start[0]+crop_size[0],
start[1]:start[1]+crop_size[1],
start[2]:start[2]+crop_size[2]], start
def random_crop_around_3D(img, bbox, crop_size, margin=[5,20,20]):
im_size = np.array(img.shape)
blow, bhigh = bbox
blow = blow.astype(int)
bhigh = bhigh.astype(int)
margin = np.array(margin)
low = np.minimum(np.maximum(bhigh+margin-crop_size, 0), im_size-crop_size)
high = np.minimum(np.maximum(blow-margin, low), im_size-crop_size)+1
offset = [np.random.randint(low[0], high=high[0]),
np.random.randint(low[1], high=high[1]),
np.random.randint(low[2], high=high[2])]
return img[offset[0]:offset[0]+crop_size[0],
offset[1]:offset[1]+crop_size[1],
offset[2]:offset[2]+crop_size[2]], np.array(offset)
def random_flip(img, bbox, axis=0):
if np.random.rand()<0.5:
tmp=1-bbox[axis+3]
bbox[axis+3]=1-bbox[axis]
bbox[axis]=tmp
return np.flip(img, axis=axis), bbox
else:
return img, bbox
def iou_3d(bbox_pred,bbox):
if len(bbox_pred.shape)==1:
bbox_pred = np.expand_dims(bbox_pred,0)
bbox = np.expand_dims(bbox,0)
ilow = np.maximum(bbox_pred,bbox)[:,:3]
ihigh = np.minimum(bbox_pred,bbox)[:,3:]
i_sides = np.maximum(ihigh-ilow,0)
i_vol = np.prod(i_sides,-1)
o_vol = np.prod(bbox_pred[:,3:]-bbox_pred[:,:3],-1)+np.prod(bbox[:,3:]-bbox[:,:3],-1)-i_vol
return (i_vol/o_vol).mean()
def sliding_window_3d(x, window_size, stride_size):
"""
x: [d,w,h]
window_size: [d,w,h]
stride_size: [d,w,h]
return: [b,d,w,h]
"""
window_offsets = [list(np.arange(x.shape[i]-window_size[i])[::stride_size[i]])+[x.shape[i]-window_size[i]] for i in range(3)]
offsets = []
outputs = []
for i in window_offsets[0]:
for j in window_offsets[1]:
for k in window_offsets[2]:
offsets.append([i,j,k])
outputs.append(x[i:i+window_size[0],j:j+window_size[1],k:k+window_size[2]])
return np.array(offsets), np.array(outputs)
def collate_fn(examples):
pixel_values = torch.cat([example["pixel_values"] for example in examples], 0)
labels = torch.cat([example["labels"] for example in examples], 0)
bbox = torch.cat([example["bbox"] for example in examples], 0)
return {"pixel_values": pixel_values, "labels": labels, "bbox":bbox}
class LUNA16_Dataset(Dataset):
mean = -775.657161489884
std = 962.3208802005623
max_sampling_times = 64
"""
https://luna16.grand-challenge.org/
"""
def __init__(self, split=None, data_dir=".", crop_size=[40,128,128], patch_size=[4,16,16], samples_per_img = 8):
annotations_csv = read_csv(f"{data_dir}/annotations.csv")[1:]
data_subsets = survey_dataset(data_dir)
# to filenames
if split is None:
split = np.arange(10) # all subsets
self.filenames = []
for s in split:
self.filenames+=data_subsets[s]
# annotation to dict
self.annotations = dict([(getUID(k),[]) for k in self.filenames])
for entry in annotations_csv:
self.annotations.setdefault(entry[0], [])
self.annotations[entry[0]]+=[entry[1:]]
self.crop_size = np.array(crop_size)
self.patch_size = np.array(patch_size)
self.samples_per_img = samples_per_img
self.max_sampling_times = max(LUNA16_Dataset.max_sampling_times, self.samples_per_img)
self.train = True
def train(self):
self.train = True
return self
def eval(self):
self.train = False
return self
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
if self.train:
return self._get_train_samples(idx)
else:
return self._get_eval_samples(idx)
def _get_eval_samples(self, idx):
fn = self.filenames[idx]
uid = getUID(fn)
image, origin, space = read_image(fn)
coords = self.annotations[uid]
patch_size_mm = self.patch_size * space[::-1]
result = dict(pixel_values=[],labels=[],bbox=[])
bboxes = []
for coord in coords:
bboxes.append(np.concatenate(convert_bounding_box(coord, origin, space),0))
bboxes = np.array(bboxes)
# get patches with sliding window
offsets, pixel_values=sliding_window_3d(image,self.crop_size,(self.crop_size*0.75).astype(int))
# normalize
pixel_values = (pixel_values-LUNA16_Dataset.mean)/LUNA16_Dataset.std
result["pixel_values"] = torch.tensor(pixel_values,dtype=torch.float32).unsqueeze(1)
result["offsets"] = torch.tensor(offsets,dtype=torch.int32)
result["bbox"] = torch.tensor(bboxes,dtype=torch.int32)
result["coords"] = np.array(coords).astype(float)
result["origin"] = origin
result["space"] = space
result["uid"] = uid
return result
def _get_train_samples(self, idx):
fn = self.filenames[idx]
uid = getUID(fn)
image, origin, space = read_image(fn)
coords = self.annotations[uid]
patch_size_mm = self.patch_size * space[::-1]
result = dict(pixel_values=[],labels=[],bbox=[])
bboxes = []
for coord in coords:
bboxes.append(convert_bounding_box(coord, origin, space))
i = 0
while i<self.samples_per_img:
if i>self.max_sampling_times:
break
if len(bboxes)>0 and np.random.rand()<0.5:
# crop a patch with a random nodule
# TODO: needs to account for the possibility that multiple nodules are contained
bbox = bboxes[np.random.randint(len(bboxes))]
cropped_img, offset = random_crop_around_3D(image, bbox, self.crop_size)
offset_bbox = bbox[0] - offset, bbox[1] - offset
target = np.concatenate([offset_bbox[0]/self.crop_size, offset_bbox[1]/self.crop_size])
result["labels"].append(torch.tensor(1))
bbox = torch.tensor(target).to(torch.float32)
i+=1
else:
# random crop a negative patch
cropped_img, offset = random_crop_3D(image, self.crop_size)
img_bbox = np.concatenate([offset, offset+self.crop_size],0)
img_bbox = np.expand_dims(img_bbox, 0)
if len(bboxes)>0:
# account for the possibility that a positive is contained
iou = [iou_3d(img_bbox, np.expand_dims(np.concatenate(bbox,0),0)) for bbox in bboxes]
if np.sum(iou)>0:
continue
result["labels"].append(torch.tensor(0))
bbox = torch.zeros(6)
i+=1
# random flip (also flip the bbox)
pixel_values, bbox = random_flip(cropped_img, bbox, 0)
pixel_values, bbox = random_flip(pixel_values, bbox, 1)
pixel_values, bbox = random_flip(pixel_values, bbox, 2)
# normalize
pixel_values = (pixel_values-LUNA16_Dataset.mean)/LUNA16_Dataset.std
# to tensor
pixel_values = torch.tensor(pixel_values.copy()).to(torch.float32)
# add channel dim
pixel_values = pixel_values.unsqueeze(0)
result["pixel_values"].append(pixel_values)
result["bbox"].append(bbox)
result["pixel_values"] = torch.stack(result["pixel_values"])
result["labels"] = torch.stack(result["labels"])
result["bbox"] = torch.stack(result["bbox"])
return result