-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
71 lines (59 loc) · 2.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from graphviz import Digraph
import numpy as np
def color_mapping(genome):
n = [0,0,0]
rgb = [0,0,0]
for i,g in enumerate(genome):
rgb[i%3]+=g//2**24
n[i%3]+=1
return tuple([max(min(c//m,255),0) for c,m in zip(rgb,n)])
def visualize_reflex(reflex, graphname='reflex.tmp'):
g = Digraph(graphname)
with g.subgraph(name='cluster_0') as c:
c.attr(color='lightblue2')
c.node_attr['style'] = 'filled'
c.node_attr['color'] = 'lightblue2'
for n in reflex.enabled_inputs:
c.node(n)
# with g.subgraph(name='cluster_1') as c:
# c.attr(style='filled', color='lightgrey')
# c.node_attr.update(style='filled', color='white')
# for i in range(reflex.ninternal):
# c.node(f'i{i}')
with g.subgraph(name='cluster_1') as c:
c.attr(color='lightgoldenrod1')
c.node_attr['style'] = 'filled'
c.node_attr['color'] = 'lightgoldenrod1'
for n in reflex.enabled_outputs:
c.node(n)
for i,o,v in reflex.connections["io"]:
g.edge(reflex.enabled_inputs[i], reflex.enabled_outputs[o],
color='lightgreen' if v>0 else 'lightpink', penwidth=str(max(0.8,min(5,abs(v)))), label=str(round(v,2)))
for i,o,v in reflex.connections["is"]:
g.edge(reflex.enabled_inputs[i], f'i{o}',
color='lightgreen' if v>0 else 'lightpink', penwidth=str(max(0.8,min(5,abs(v)))), label=str(round(v,2)))
for i,o,v in reflex.connections["ss"]:
g.edge(f'i{i}', f'i{o}',
color='lightgreen' if v>0 else 'lightpink', penwidth=str(max(0.8,min(5,abs(v)))), label=str(round(v,2)))
for i,o,v in reflex.connections["so"]:
g.edge(f'i{i}', reflex.enabled_outputs[o],
color='lightgreen' if v>0 else 'lightpink', penwidth=str(max(0.8,min(5,abs(v)))), label=str(round(v,2)))
return g
class MovingSupply():
def __init__(self, world_size, Tma_list, size, move_freq, move_step, n_scatter):
self.Tma_list=Tma_list # (peroid, mean, amp)
self.size = size
self.radius=size//2
self.move_freq=move_freq
self.move_step=move_step
self.n_scatter=n_scatter
self.ncells = (self.size)**2
self.loc = np.random.randint(world_size,size=2)
def step(self, world):
locs = (self.loc+np.random.randint(-self.radius,self.radius, size=(self.n_scatter,2)))%world.size
if world.step_cnt%self.move_freq==0:
self.loc=(self.loc+np.random.randint(self.move_step, size=2))%world.size
v = 0
for t,m,a in self.Tma_list:
v+=(self.ncells*m+ self.ncells*a*np.sin(world.step_cnt/t*np.pi*2))/t*np.pi
world.res[locs[:,0],locs[:,1]]+=max(0,v)