-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathhyperbola-addendum.tm
1243 lines (969 loc) · 169 KB
/
hyperbola-addendum.tm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<TeXmacs|1.99.1>
<style|generic>
<\body>
Showing that by using <math|T<rsub|2><around*|(|n|)>>,
<math|T<rsub|3><around*|(|n|)>> starts its iterations with
<math|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>>.
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|3*<big|sum><rsub|z=1><rsup|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>><around*|(|2*S<around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>,z+1,<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>|)>-<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>><rsup|2>+<around*|\<lfloor\>|<frac|n|z<rsup|2>>|\<rfloor\>>|)>+<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>><rsup|3>>>|<row|<cell|>|<cell|=>|<cell|3*<around*|(|2*T<rsub|2><around*|(|n|)>-<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>-n|)>+3*<big|sum><rsub|z=2><rsup|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>><around*|(|2*S<around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>,z+1,<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>|)>-<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>><rsup|2>+<around*|\<lfloor\>|<frac|n|z<rsup|2>>|\<rfloor\>>|)>+<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>><rsup|3>>>>>
</eqnarray*>
<\equation*>
T<rsub|3><around*|(|n|)>=<big|sum><rsup|n><rsub|z=1>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>|)>=<big|sum><rsub|z=1><rsup|n><big|sum><rsup|n/z><rsub|x=1>\<tau\><rsub|2><around*|(|x|)>=<big|sum><rsup|n><rsub|z=1><big|sum><rsup|<around*|\<lfloor\>|n/z|\<rfloor\>>><rsub|y=1><big|sum><rsup|<around*|\<lfloor\>|n/<around*|(|y*z|)>|\<rfloor\>>><rsub|x=1>1=<big|sum><rsub|x,y,z:x*y*z\<leq\>n>1
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|z=1><rsup|n>\<tau\><rsub|2><around*|(|z|)>*<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|z=1><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>>\<tau\><rsub|2><around*|(|z|)>*<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>+<big|sum><rsub|z=1><rsup|<around*|\<lceil\>|<sqrt|n>|\<rceil\>>-1>z*<around*|(|T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>|)>-T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z+1>|\<rfloor\>>|)>|)>>>|<row|<cell|>|<cell|>|<cell|>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|z=1><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>>\<tau\><rsub|2><around*|(|z|)>*<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>+<big|sum><rsub|z=1><rsup|<around*|\<lceil\>|<sqrt|n>|\<rceil\>>-1>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>|)>-<around*|(|<around*|\<lceil\>|<sqrt|n>|\<rceil\>>-1|)>*T<rsub|2><around*|(|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|z=1><rsup|n>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>|)>=<big|sum><rsub|z=1><rsup|<around*|\<lceil\>|<sqrt|n>|\<rceil\>>-1>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>|)>+<big|sum><rsub|z=<around*|\<lceil\>|<sqrt|n>|\<rceil\>>><rsup|n>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<around*|(|n|)>-T<around*|(|m|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|x=1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<big|sum><rsup|m><rsub|x=1><around*|\<lfloor\>|<frac|m|x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|x,y:m\<less\>x*y\<leq\>n>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|n><rsub|x=m+1>\<tau\><around*|(|x|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|2*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><rsub|x=1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>|)>-<around*|(|2*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>>><rsub|x=1><around*|\<lfloor\>|<frac|m|x>|\<rfloor\>>-<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>><rsup|2>|)>>>|<row|<cell|>|<cell|=>|<cell|2*<around*|(|<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><rsub|x=1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<big|sum><rsup|<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>>><rsub|x=1><around*|\<lfloor\>|<frac|m|x>|\<rfloor\>>|)>-<around*|(|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>-<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>><rsup|2>|)>>>|<row|<cell|>|<cell|=>|<cell|2*<around*|(|<big|sum><rsup|<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>>><rsub|x=1><around*|(|<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<around*|\<lfloor\>|<frac|m|x>|\<rfloor\>>|)>+<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><rsub|x=<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>>+1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>|)>-<around*|(|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>-<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>><rsup|2>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|2><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|x=1>\<tau\><rsub|2><around*|(|x|)>=<big|sum><rsup|n><rsub|x=1>T<rsub|1><around*|(|<frac|n|x>|)>>>|<row|<cell|T<rsub|1><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|x=1>\<mu\><around*|(|x|)>*T<rsub|2><around*|(|<frac|n|x>|)>>>|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|x=1><big|sum><rsub|d<around*|\||x|\<nobracket\>>>\<tau\><rsub|2><around*|(|d|)>>>|<row|<cell|\<tau\><rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<tau\><rsub|2><around*|(|d|)>>>|<row|<cell|\<tau\><rsub|2><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|3><around*|(|<frac|n|d>|)>>>|<row|<cell|T<rsub|2><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|d=1>\<mu\><around*|(|d|)>*T<rsub|3><around*|(|<frac|n|d>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|\<approx\>>|<cell|2*<big|sum><rsup|n><rsub|c=0><big|sum><rsup|x*<around*|(|x-c|)>\<leq\>n><rsub|x=c+1><around*|\<lfloor\>|<frac|n|x*<around*|(|x-c|)>>|\<rfloor\>>>>|<row|<cell|>|<cell|\<approx\>>|<cell|6*<big|sum><rsup|c<rsup|2>\<leq\>n><rsub|c=0><big|sum><rsup|x<rsup|2>*<around*|(|x-c|)>\<leq\>n><rsub|x=c+1><around*|\<lfloor\>|<frac|n|x*<around*|(|x-c|)>>|\<rfloor\>>>>|<row|<cell|>|<cell|\<approx\>>|<cell|6*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><rsub|c=0><big|sum><rsup|<around*|\<lfloor\>|n/<around*|(|c+<sqrt|n|3>|)><rsup|2>|\<rfloor\>>><rsub|x=c+1><around*|\<lfloor\>|<frac|n|x*<around*|(|x-c|)>>|\<rfloor\>>>>>>
</eqnarray*>
<with|gr-mode|<tuple|edit|line>|gr-frame|<tuple|scale|1cm|<tuple|0.5gw|0.5gh>>|gr-geometry|<tuple|geometry|1par|0.6par>|gr-grid|<tuple|empty>|gr-grid-old|<tuple|cartesian|<point|0|0>|5>|gr-edit-grid-aspect|<tuple|<tuple|axes|none>|<tuple|1|none>|<tuple|10|none>>|gr-edit-grid|<tuple|empty>|gr-edit-grid-old|<tuple|cartesian|<point|0|0>|5>|<graphics||<line|<point|0|0>|<point|0.5|-0.5>|<point|0.0|-1.0>|<point|-0.5|-0.5>|<point|0.0|0.0>>|<line|<point|0|-1>|<point|0.0|-1.5>|<point|0.5|-1.0>|<point|0.5|-0.5>>|<line|<point|0|-1.5>|<point|-0.5|-1.0>|<point|-0.5|-0.5>>|<line|<point|-0.5|-0.5>|<point|-0.5|0.5>|<point|0.0|1.0>|<point|0.0|0.0>>|<line|<point|-0.5|0.5>|<point|-1.0|1.0>|<point|-0.5|1.5>|<point|0.0|1.0>|<point|0.0|3.0>|<point|-0.5|3.5>|<point|-0.5|1.5>>|<line|<point|-0.5|3.5>|<point|0.0|4.0>|<point|0.5|3.5>|<point|0.0|3.0>>|<line|<point|0.5|3.5>|<point|0.5|1.5>|<point|0.0|1.0>|<point|0.5|0.5>|<point|1.0|1.0>|<point|0.5|1.5>>|<line|<point|0.5|0.5>|<point|0.5|-0.5>>|<line|<point|1|1>|<point|1.0|0.0>|<point|2.0|-1.0>|<point|1.5|-1.5>|<point|0.5|-0.5>|<point|1.0|0.0>>|<line|<point|0|-1.5>|<point|1.0|-2.5>|<point|1.5|-2.0>|<point|0.5|-1.0>>|<line|<point|1.5|-1.5>|<point|1.5|-2.0>|<point|3.5|-4.0>|<point|3.5|-4.5>|<point|4.0|-4.0>|<point|4.0|-3.5>|<point|3.5|-4.0>>|<line|<point|4|-3.5>|<point|2.0|-1.5>|<point|2.0|-1.0>>|<line|<point|2|-1.5>|<point|1.5|-2.0>>|<line|<point|1.5|-2>|<point|1.5|-2.5>|<point|3.5|-4.5>>|<line|<point|1.5|-2.5>|<point|1.0|-3.0>|<point|1.0|-2.5>>|<line|<point|0|-2>|<point|-1.0|-3.0>|<point|-1.0|-2.5>>|<line|<point|-0.5|-0.5>|<point|-1.0|0.0>|<point|-1.0|1.0>>|<line|<point|-1|0>|<point|-2.0|-1.0>|<point|-1.5|-1.5>|<point|-0.5|-0.5>>|<line|<point|-2|-1>|<point|-2.0|-1.5>|<point|-1.5|-2.0>|<point|-1.5|-1.5>>|<line|<point|-2|-1.5>|<point|-4.0|-3.5>|<point|-3.5|-4.0>|<point|-1.5|-2.0>>|<line|<point|-1.5|-2>|<point|-0.5|-1.0>>|<line|<point|0|-1.5>|<point|-1.0|-2.5>|<point|-1.5|-2.0>|<point|-1.5|-2.5>|<point|-1.0|-3.0>>|<line|<point|-1.5|-2.5>|<point|-3.5|-4.5>|<point|-4.0|-4.0>|<point|-4.0|-3.5>>|<line|<point|-3.5|-4>|<point|-3.5|-4.5>>|<line|<point|0|-2>|<point|1.0|-3.0>>|<line|<point|0|-1.5>|<point|0.0|-2.0>>>>
<\eqnarray*>
<tformat|<table|<row|<cell|x<rsup|2>*z>|<cell|=>|<cell|n>>|<row|<cell|x<rsup|2>*<around*|(|x-c|)>>|<cell|=>|<cell|n>>>>
</eqnarray*>
From Mark Lewko (``seem to be able to compute''):
<\eqnarray*>
<tformat|<table|<row|<cell|D<rsub|k><around*|(|x|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<tau\><rsub|k><around*|(|n|)>=<big|sum><rsub|a*b\<leq\>x>\<tau\><rsub|k-1><around*|(|a|)>=<big|sum><rsub|a\<leq\>x><big|sum><rsub|b\<leq\>x/a>\<tau\><rsub|k-1><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x<rsup|1/k>><big|sum><rsub|b\<leq\>x/a>\<tau\><rsub|k-1><around*|(|b|)>+<big|sum><rsub|x<rsup|1/k>\<less\>b\<leq\>x><big|sum><rsub|a\<leq\>x/b>\<tau\><rsub|k-1><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x<rsup|1/k>><big|sum><rsub|b\<leq\>x/a>\<tau\><rsub|k-1><around*|(|b|)>+<big|sum><rsub|a\<leq\>x<rsup|1-1/k>>\<tau\><rsub|k-1><around*|(|a|)>*<big|sum><rsub|x<rsup|1/k>\<less\>b\<leq\>x/a>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<less\>x<rsup|1/k>>D<rsub|k-1><around*|(|<around*|\<lfloor\>|<frac|x|a>|\<rfloor\>>|)>+<big|sum><rsub|a\<leq\>x<rsup|1-1/k>>\<tau\><rsub|k-1><around*|(|a|)>*<around*|(|<around*|\<lfloor\>|<frac|x|a>|\<rfloor\>>-x<rsup|1/k>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>t<rsub|j><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|j><rsub|k=0><around*|(|-1|)><rsup|j-k>*<binom|j|k>*<big|sum><rsub|n\<leq\>x>\<tau\><rsub|k><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|k=0><rsup|j><around*|(|-1|)><rsup|j-k>*<binom|j|k>*D<rsub|k><around*|(|x|)>>>>>
</eqnarray*>
<\equation*>
<big|sum><rsub|x\<leq\>n>\<mu\><around*|(|n|)><rsup|2>=<big|sum><rsub|x\<leq\>n><big|sum><rsub|l<around*|\||x|\<nobracket\>>>\<mu\><around*|(|l<rsup|1/2>|)>=<big|sum><rsub|l<rsup|2*>*m\<leq\>n>\<mu\><around*|(|l|)>=<big|sum><rsub|l=1><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>>\<mu\><around*|(|l|)><around*|\<lfloor\>|<frac|n|l<rsup|2>>|\<rfloor\>>
</equation*>
From Nathan McKenzie:
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|k><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|j=a+1>T<rsub|k-1><around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|j=1><rsup|a>\<tau\><rsub|k-1><around*|(|j|)>*T<rsub|1><around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|j=1><rsup|a><big|sum><rsub|s=a/j+1><rsup|n/j><big|sum><rsub|m=1><rsup|k-2>\<tau\><rsub|m><around*|(|j|)>*T<rsub|k-m-1><around*|(|<frac|n|j*s>|)>>>|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|j=a+1>T<rsub|2><around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|j=1><rsup|a>\<tau\><rsub|2><around*|(|j|)>*T<rsub|1><around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|j=1><rsup|a><big|sum><rsub|s=a/j+1><rsup|n/j>T<rsub|1><around*|(|<frac|n|j*s>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|D<rsub|k,s><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n<rsup|1/k>><rsub|m=s><big|sum><rsub|j=0><rsup|k-1><binom|k|j>*D<rsub|j,m+1><around*|(|<around*|\<lfloor\>|<frac|n|m<rsup|k-j>>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\equation*>
n=<big|prod><rsup|k><rsub|i=1>p<rsub|i><rsup|a<rsub|i>>,d<rsub|i><around*|(|n|)>=<big|prod><rsup|k><rsub|i=1><binom|a<rsub|i>+i-1|a<rsub|i>>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|D<rsub|i><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|j=1>D<rsub|i-1><around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|a><rsub|j=1>D<rsub|i-1><around*|(|<frac|n|j>|)>+<big|sum><rsub|j=a+1><rsup|n>D<rsub|i-1><around*|(|<frac|n|j>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|a><rsub|j=1>D<rsub|i-1><around*|(|<frac|n|j>|)>>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|a><big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=1>D<rsub|i-2><around*|(|<frac|n/j|k>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|a><big|sum><rsup|<around*|\<lfloor\>|a/j|\<rfloor\>>><rsub|k=1>D<rsub|i-2><around*|(|<frac|n/j|k>|)>+<big|sum><rsub|j=1><rsup|a><big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>D<rsub|i-2><around*|(|<frac|n/j|k*>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|a>d<rsub|2><around*|(|j|)>*D<rsub|i-2><around*|(|<frac|n|j>|)>+<big|sum><rsub|j=1><rsup|a>d<rsub|1><around*|(|j|)>*<big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>D<rsub|i-2><around*|(|<frac|n/j|k>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|j=1><rsup|a>d<rsub|2><around*|(|j|)>*D<rsub|i-2><around*|(|<frac|n|j>|)>>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|a>d<rsub|2><around*|(|j|)>*<big|sum><rsup|n/j><rsub|k=1>D<rsub|i-3><around*|(|<frac|n/j|k>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|a>d<rsub|2><around*|(|j|)>*<big|sum><rsup|a/j><rsub|k=1>D<rsub|i-3><around*|(|<frac|n/j|k>|)>+<big|sum><rsub|j=1><rsup|a>d<rsub|2><around*|(|j|)>*<big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>D<rsub|i-3><around*|(|<frac|n/j|k>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|a>d<rsub|3><around*|(|j|)>*D<rsub|i-3><around*|(|<frac|n|j>|)>+<big|sum><rsub|j=1><rsup|a>d<rsub|2><around*|(|j|)>*<big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>D<rsub|i-3><around*|(|<frac|n/j|k>|)>>>>>
</eqnarray*>
<\equation*>
D<rsub|i><around*|(|n|)>=<big|sum><rsup|a><rsub|j=1>d<rsub|i-1><around*|(|j|)>*<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>+<big|sum><rsup|a><rsub|j=1><big|sum><rsup|i-2><rsub|l=1>d<rsub|l><around*|(|j|)><big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>D<rsub|i-l-1><around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|n/j|\<rfloor\>>|k>|\<rfloor\>>|)>+<big|sum><rsup|n><rsub|j=a+1>D<rsub|i-1><around*|(|<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>|)>
</equation*>
<\equation*>
T<rsub|i><around*|(|n|)>=<big|sum><rsup|a><rsub|j=1>\<tau\><rsub|i-1><around*|(|j|)>*<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>+<big|sum><rsup|i-2><rsub|\<ell\>=1><big|sum><rsup|a><rsub|j=1>\<tau\><rsub|\<ell\>><around*|(|j|)><big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>T<rsub|i-\<ell\>-1><around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|n/j|\<rfloor\>>|k>|\<rfloor\>>|)>+<big|sum><rsup|n><rsub|j=a+1>T<rsub|i-1><around*|(|<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>|)>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|m><rsub|k=b+1>T<rsub|i><around*|(|<around*|\<lfloor\>|<frac|m|k>|\<rfloor\>>|)>>|<cell|=>|<cell|<big|sum><rsup|m><rsub|k=1>T<rsub|i><around*|(|<around*|\<lfloor\>|<frac|m|k>|\<rfloor\>>|)>-<big|sum><rsup|b><rsub|k=1>T<rsub|i><around*|(|<around*|\<lfloor\>|<frac|m|k>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|i+1><around*|(|m|)>-<big|sum><rsup|b><rsub|k=1>T<rsub|i><around*|(|<around*|\<lfloor\>|<frac|m|k>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|m><rsub|k=b+1><big|sum><rsup|<around*|\<lfloor\>|m/k|\<rfloor\>>><rsub|l=1>T<rsub|i-1><around*|(|<around*|\<lfloor\>|<frac|m/k|l>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|n/j|\<rfloor\>>|k>|\<rfloor\>>|)>>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|n/j|\<rfloor\>>><rsub|k=<around*|\<lfloor\>|a/j|\<rfloor\>>+1><big|sum><rsup|<around*|\<lfloor\>|n/<around*|(|j*k|)>|\<rfloor\>>><rsub|\<ell\>=1>T<rsub|1><around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|n/<around*|(|j*k|)>|\<rfloor\>>|\<ell\>>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\equation*>
D<rsub|k,s><around*|(|n|)>=<big|sum><rsup|n<rsup|1/k>><rsub|m=s><big|sum><rsup|k-1><rsub|j=0><binom|k|j>*D<rsub|j,m+1><around*|(|<around*|\<lfloor\>|<frac|n|m<rsup|k-j>>|\<rfloor\>>|)>
</equation*>
Why a wheel is used with Linnik's identity.
<\equation*>
<big|sum><rsup|><rsub|k><frac|<around*|(|-1|)><rsup|k+1>|k>*t<rsub|k><around*|(|n|)>=<choice|<tformat|<table|<row|<cell|1/a>|<cell|if
p<rsup|a>>>|<row|<cell|0>|<cell|otherwise>>>>>
</equation*>
therefore in
<\eqnarray*>
<tformat|<table|<row|<cell|\<Pi\><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|k><frac|<around*|(|-1|)><rsup|k+1>|k>*T<rsub|k><around*|(|n|)>>>>>
</eqnarray*>
the inclusion of any <math|t<rsub|k><around*|(|n|)>> contributions can be
omitted for <math|n> not a prime power as long as it is omitted for all
<math|T<rsub|k><around*|(|n|)>>.
Other stuff:
<\equation*>
<binom|n|k>=<frac|n!|k!*<around*|(|n-k|)>!>
</equation*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|i\<leq\><around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>>\<mu\><around*|(|i|)>*<around*|\<lfloor\>|<frac|<sqrt|n|3>|i>|\<rfloor\>><rsup|3>>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>><rsub|i=1>i<rsup|3>*<big|sum><rsup|<frac|<around*|\<lfloor\>|<frac|<sqrt|n|3>|i>|\<rfloor\>>|>><rsub|j=<around*|\<lfloor\>|<frac|<sqrt|n|3>|i+1>|\<rfloor\>>+1>\<mu\><around*|(|j|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>><rsub|i=1>i<rsup|3>*<around*|[|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|i>|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|i+1>|\<rfloor\>>|)>|]>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|1*<around*|[|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|1>|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|2>|\<rfloor\>>|)>|]>+>>|<row|<cell|>|<cell|>|<cell|-1*<around*|[|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|2>|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|3>|\<rfloor\>>|)>|]>+>>|<row|<cell|>|<cell|>|<cell|1*<around*|[|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|4>|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|5>|\<rfloor\>>|)>|]>+>>|<row|<cell|>|<cell|>|<cell|\<ldots\>
<around*|(|mod 9|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|1>|\<rfloor\>>|)>-2*M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|2>|\<rfloor\>>|)>+M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|3>|\<rfloor\>>|)>+>>|<row|<cell|>|<cell|>|<cell|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|4>|\<rfloor\>>|)>-2*M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|5>|\<rfloor\>>|)>+M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|6>|\<rfloor\>>|)>+>>|<row|<cell|>|<cell|>|<cell|\<ldots\>
<around*|(|mod 9|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>><rsub|i=1>M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|i>|\<rfloor\>>|)>-3*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>/3|\<rfloor\>>><rsub|j=1>M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|3*j-1>|\<rfloor\>>|)>
<around*|(|mod 9|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|1-3*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>/3|\<rfloor\>>><rsub|j=1>M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|3*j-1>|\<rfloor\>>|)>
<around*|(|mod 9|)>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>/3|\<rfloor\>>><rsub|j=1>M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|3*j-1>|\<rfloor\>>|)><rsup|>>|<cell|=>|<cell|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|2>|\<rfloor\>>|)>+M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|5>|\<rfloor\>>|)>+M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|8>|\<rfloor\>>|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|2>|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|5>|\<rfloor\>>|)>|)>+2*<around*|(|M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|5>|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|<frac|<sqrt|n|3>|8>|\<rfloor\>>|)>|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|i=<around*|\<lfloor\>|<sqrt|n|3>/5|\<rfloor\>>+1><rsup|<around*|\<lfloor\>|<sqrt|n|3>/2|\<rfloor\>>>\<mu\><around*|(|i|)>+2*<big|sum><rsub|i=<around*|\<lfloor\>|<sqrt|n|3>/8|\<rfloor\>>+1><rsup|<around*|\<lfloor\>|<sqrt|n|3>/5|\<rfloor\>>>\<mu\><around*|(|i|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=1><rsup|<around*|\<lfloor\>|<sqrt|n|3>/3|\<rfloor\>>-1>j*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>/<around*|(|3*j-1|)>|\<rfloor\>>><rsub|i=<around*|\<lfloor\>|<sqrt|n|3>/<around*|(|3*j+2|)>|\<rfloor\>>>\<mu\><around*|(|i|)><rsup|>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<big|sum><rsub|j=1><rsup|<around*|\<lfloor\>|<sqrt|n|3>/9|\<rfloor\>>-1><around*|(|*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>/<around*|(|9*j-1|)>|\<rfloor\>>><rsub|i=<around*|\<lfloor\>|<sqrt|n|3>/<around*|(|9*j+2|)>|\<rfloor\>>>\<mu\><around*|(|i|)>-<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n|3>/<around*|(|9*j+2|)>|\<rfloor\>>><rsub|i=<around*|\<lfloor\>|<sqrt|n|3>/<around*|(|9*j+5|)>|\<rfloor\>>>\<mu\><around*|(|i|)>|)><rsup|>
<around*|(|mod 3|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|F<rsub|3><around*|(|x|)>>|<cell|=>|<cell|<around*|(|<big|sum><rsup|<around*|\<lfloor\>|x<rsup|1/3>|\<rfloor\>>><rsub|j=1>\<mu\><around*|(|j|)>*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|x<rsup|>|j<rsup|3>>|\<rfloor\>>|)>-1|)>/3>>>>
</eqnarray*>
Attempt at proof without Linnik's identity.
For <math|a> a square-free product of <math|\<omega\><around*|(|a|)>>
distinct primes
<\eqnarray*>
<tformat|<table|<row|<cell|c<around*|(|a|)>>|<cell|=>|<cell|a*<around*|(|-<binom|\<omega\><around*|(|a|)>|\<omega\><around*|(|a|)>>+<binom|\<omega\><around*|(|a|)>|\<omega\><around*|(|a|)>-1>-<binom|\<omega\><around*|(|a|)>|\<omega\><around*|(|a|)>-2>+\<ldots\>\<pm\><binom|\<omega\><around*|(|a|)>|1>|)>>>|<row|<cell|>|<cell|=>|<cell|a*<around*|(|-<big|sum><rsup|\<omega\><around*|(|a|)>><rsub|j=0><around*|(|-1|)><rsup|j>*<binom|\<omega\><around*|(|a|)>|\<omega\><around*|(|a|)>-j>+<around*|(|-1|)><rsup|\<omega\><around*|(|a|)>>*<binom|\<omega\><around*|(|a|)>|0>|)>>>|<row|<cell|>|<cell|=>|<cell|a*<around*|(|0+<around*|(|-1|)><rsup|\<omega\><around*|(|a|)>>\<cdot\>1|)>>>|<row|<cell|>|<cell|=>|<cell|a*<around*|(|-1|)><rsup|\<omega\><around*|(|a|)>>>>|<row|<cell|>|<cell|=>|<cell|a*\<mu\><around*|(|a|)>>>>>
</eqnarray*>
for <math|a=p<rsup|b>> a prime power
<\eqnarray*>
<tformat|<table|<row|<cell|c<around*|(|a|)>>|<cell|=>|<cell|a*<around*|(|-<binom|b|b>+<binom|b+1|b>-<binom|b+2|b>|)>>>>>
</eqnarray*>
Recurrence approach to coefficients <math|c<around*|(|a|)>>
Seeing that <math|c<around*|(|1|)>=1>, we can then express
<math|c<around*|(|a|)>> for <math|a\<gtr\>1> as a recurrence relation
<\equation*>
c<around*|(|a|)>=-<big|sum><rsub|d\<gtr\>1,d<around*|\||a|\<nobracket\>>>d*c<around*|(|<frac|a|d>|)>
</equation*>
and substituting <math|c<around*|(|a|)>=1\<cdot\>c<around*|(|a/1|)>> and
rearranging yields
<\equation*>
<big|sum><rsup|><rsub|d<around*|\||a|\<nobracket\>>>d*c<around*|(|<frac|a|d>|)>=0
</equation*>
Noting that the left hand side is equal to unity if <math|a=1>, we obtain
<\equation*>
<big|sum><rsub|d<around*|\||a|\<nobracket\>>>d*c<around*|(|<frac|a|d>|)>=<choice|<tformat|<table|<row|<cell|1>|<cell|if
a=1>>|<row|<cell|0>|<cell|otherwise>>>>>=\<epsilon\><around*|(|a|)>
</equation*>
where <math|\<epsilon\><around*|(|a|)>> is the multiplicative identity.
\ If we select
<\equation*>
c<around*|(|n|)>=n*\<mu\><around*|(|n|)>
</equation*>
then substituting gives
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d<around*|\||a|\<nobracket\>>>d*c<around*|(|<frac|a|d>|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||a|\<nobracket\>>>d*<around*|(|<frac|a|d>*\<mu\><around*|(|<frac|a|d>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|a*<big|sum><rsub|d<around*|\||a|\<nobracket\>>>\<mu\><around*|(|<frac|a|d>|)>>>|<row|<cell|>|<cell|=>|<cell|a<big|sum><rsub|d<around*|\||a|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|a*\<epsilon\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|\<epsilon\><around*|(|a|)>>>>>
</eqnarray*>
and thus our choice satisfies the recurrence relation.
<\equation*>
<big|sum><rsub|m\<leq\>n,\<omega\><around*|(|m|)>=2>1=#<around*|{|m:m\<leq\>n,m=p<rsup|a>*q<rsup|b>|}>
</equation*>
\;
<\equation*>
\;
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|p<rsub|1>*p<rsub|2>\<leq\>n>1>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>n,\<omega\><around*|(|a|)>=2,a
squarefree>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|p<rsub|1>\<leq\>n>\<pi\><around*|(|<around*|\<lfloor\>|<frac|n|p<rsub|1>>|\<rfloor\>>|)>>>>>
</eqnarray*>
\;
<\equation*>
f<rsub|2,3><around*|(|n|)>=<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|2><around*|(|<frac|n|d<rsup|3>>|)>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|2,3><around*|(|1|)>>|<cell|=>|<cell|1>>|<row|<cell|f<rsub|2,3><around*|(|p|)>>|<cell|=>|<cell|2>>|<row|<cell|f<rsub|2,3><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|3,a\<gtr\>1>>|<row|<cell|f<rsub|2,3><around*|(|n|)>>|<cell|=>|<cell|2<rsup|\<omega\><around*|(|n|)>>,n
squarefree>>|<row|<cell|f<rsub|2,3><around*|(|n|)>>|<cell|=>|<cell|3*2<rsup|c<rsub|1>*>*3<rsup|c<rsub|2>>,n
not squarefree>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|m\<leq\>n>f<rsub|2,3><around*|(|m|)>>|<cell|=>|<cell|1+3*<around*|(|n-S<around*|(|n|)>|)>*C<rsub|1>+2*\<pi\><around*|(|n|)>+4*C<rsub|2>>>>>
</eqnarray*>
<\equation*>
\<pi\><around*|(|n|)>\<equiv\><around*|(|<big|sum><rsub|m\<leq\>n>f<rsub|2,3><around*|(|m|)>-1-3*<around*|(|n-S<around*|(|n|)>|)>*C<rsub|1>|)>/2
<around*|(|mod 2|)>
</equation*>
<\equation*>
f<rsub|2,4><around*|(|n|)>=<big|sum><rsub|d<rsup|4><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|2><around*|(|<frac|n|d<rsup|4>>|)>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|2,4><around*|(|1|)>>|<cell|=>|<cell|1>>|<row|<cell|f<rsub|2,4><around*|(|p|)>>|<cell|=>|<cell|2>>|<row|<cell|f<rsub|2,4><around*|(|p<rsup|2>|)>>|<cell|=>|<cell|3>>|<row|<cell|f<rsub|2,4><around*|(|p<rsup|3>|)>>|<cell|=>|<cell|4>>|<row|<cell|f<rsub|2,4><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|4,a\<gtr\>3>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|2><around*|(|n|)>=<big|sum><rsup|n><rsub|i=1>\<tau\><rsub|2><around*|(|i|)>>|<cell|=>|<cell|2*\<pi\><around*|(|3|)>+<big|sum><rsup|n><rsub|i=5>\<tau\><rsub|1><around*|(|i|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><rsub|0><around*|(|n|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|0>|<cell|otherwise>>>>>=\<varepsilon\><around*|(|n|)>>>|<row|<cell|\<tau\><rsub|1><around*|(|n|)>>|<cell|=>|<cell|1=1<around*|(|n|)>>>|<row|<cell|\<tau\><rsub|2><around*|(|n|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|k=1><around*|(|a<rsub|i>+1|)>=d<around*|(|n|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><rsub|k><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d>\<tau\><rsub|k-1><around*|(|<frac|n|d>|)>=<around*|(|1
\<ast\> \<tau\><rsub|k-1>|)><around*|(|n|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|2><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|i=1>\<tau\><rsub|2><around*|(|i|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|n><rsub|i=1>\<tau\><rsub|1><around*|(|i|)>*T<rsub|1><around*|(|<around*|\<lfloor\>|<frac|n|i>|\<rfloor\>>|)>>>|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|n><rsub|i=1>\<tau\><rsub|2><around*|(|i|)>*T<rsub|1><around*|(|<around*|\<lfloor\>|<frac|n|i>|\<rfloor\>>|)>>>>>
</eqnarray*>
Try omitting factors all numbers divisible by two.
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|x:x\<leq\>n,2\<nmid\>x>\<tau\><rsub|2><around*|(|x|)>>|<cell|=>|<cell|2*<big|sum><rsub|x:x\<leq\><sqrt|n>,2\<nmid\>x><around*|\<lceil\>|<frac|<around*|\<lfloor\>|n/x|\<rfloor\>>|2>|\<rceil\>>-<around*|(|<around*|\<lceil\>|<frac|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|2>|\<rceil\>>|)><rsup|2>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|\<lceil\>|<frac|<around*|\<lfloor\>|n/x|\<rfloor\>>|2>|\<rceil\>>>|<cell|=>|<cell|<frac|<around*|\<lfloor\>|n/x|\<rfloor\>>+1|2>>>|<row|<cell|>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|n+x|2*x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|n|2*x>|\<rfloor\>>+<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>
mod 2>>|<row|<cell|>|<cell|=>|<cell|<around*|(|<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>+<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>
mod 2|)>/2>>>>
</eqnarray*>
<\equation*>
S<rsub|odd><around*|(|n;a,b|)>=<around*|(|<big|sum><rsub|a\<leq\>x\<leq\>b,x
odd><around*|(|<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>+<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>
mod 2|)>|)>/2
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsup|><rsub|2,odd><around*|(|n|)>=<big|sum><rsub|x:x\<leq\>n,x
odd>\<tau\><rsub|2><around*|(|x|)>>|<cell|=>|<cell|2*S<rsub|odd><around*|(|n;1,<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|)>-<around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>+1|2>|\<rfloor\>>|)><rsup|2>>>>>
</eqnarray*>
Note that:
<\itemize-dot>
<item>The value of <math|T<rsub|2,even><around*|(|n|)>> can be computed
from <math|T<rsub|2><around*|(|n/2|)>> and
<math|T<rsub|2><around*|(|n/4|)>> and so all terms smaller by a power of
<math|2> can be calculated together in the same total time as for
<math|T<rsub|2><around*|(|n|)>> alone.
<item>The included points form a double-size latticed, offset by one,
that would allow the successive approximation algorithm to be used for
<math|T<rsub|2,odd><around*|(|n|)>> with a simple modification.
</itemize-dot>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsup|><rsub|2><around*|(|n|)>>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+2*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>-T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+2*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>+3*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>-2*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|8>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+2*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>+3*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>+4*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|8>|\<rfloor\>>|)>-3*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|16>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|i=0><around*|(|i+1|)>*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2<rsup|i>>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|2><around*|(|n|)>-T<rsub|2><around*|(|<frac|n|2>|)>>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|i=0><around*|(|i+1|)>*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2<rsup|i>>|\<rfloor\>>|)>-<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|i=1>i*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2<rsup|i>>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|i=0>T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2<rsup|i>>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|m><rsub|k=0>T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|2<rsup|m>>|\<rfloor\>>|)>>|<cell|=>|<cell|<big|sum><rsup|m><rsub|k=0><big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n/2<rsup|m>|\<rfloor\>>><rsub|i=0><around*|(|i+1|)>*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n/2<rsup|m>|2<rsup|i>>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|m><rsub|k=0><big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n/2<rsup|m>|\<rfloor\>>><rsub|i=0><around*|(|i+1|)>*T<rsub|2,odd><around*|(|<around*|\<lfloor\>|<frac|n|2<rsup|m-i>>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+2*T<rsub|2,odd><around*|(|<frac|n|2>|)>+3*T<rsub|2,odd><around*|(|<frac|n|4>|)>+4*T<rsub|2,odd><around*|(|<frac|n|8>|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|T<rsub|2,odd><around*|(|<frac|n|2>|)>+2*T<rsub|2,odd><around*|(|<frac|n|4>|)>+3*T<rsub|2,odd><around*|(|<frac|n|8>|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|T<rsub|2,odd><around*|(|<frac|n|4>|)>+2*T<rsub|2,odd><around*|(|<frac|n|8>|)>+3*T<rsub|2,odd><around*|(|<frac|n|16>|)>+\<ldots\>>>>>
</eqnarray*>
Reorganize <math|T<rsub|3><around*|(|n|)>> by increasing factor of <math|2>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|T<rsub|2><around*|(|<frac|n|1>|)>+T<rsub|2><around*|(|<frac|n|2>|)>+T<rsub|2><around*|(|<frac|n|3>|)>+\<ldots\>+T<rsub|2><around*|(|<frac|n|n>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2><around*|(|<frac|n|1>|)>+T<rsub|2><around*|(|<frac|n|2>|)>+T<rsub|2><around*|(|<frac|n|4>|)>+T<rsub|2><around*|(|<frac|n|8>|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|T<rsub|2><around*|(|<frac|n|3>|)>+T<rsub|2><around*|(|<frac|n|6>|)>+T<rsub|2><around*|(|<frac|n|12>|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|T<rsub|2><around*|(|<frac|n|5>|)>+T<rsub|2><around*|(|<frac|n|10>|)>+T<rsub|2><around*|(|<frac|n|20>|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3,odd><around*|(|n|)>>|<cell|=>|<cell|T<rsub|2,odd><around*|(|<frac|n|1>|)>+T<rsub|2,odd><around*|(|<frac|n|3>|)>+T<rsub|2,odd><around*|(|<frac|n|5>|)>+T<rsub|2,odd><around*|(|<frac|n|7>|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|\<ldots\>.>>|<row|<cell|>|<cell|+>|<cell|T<rsub|2,odd><around*|(|<frac|n|3>|)>+T<rsub|2,odd><around*|(|<frac|n|9>|)>+T<rsub|2,odd><around*|(|<frac|n|15>|)>+T<rsub|2,odd><around*|(|<frac|n|21>|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|T<rsub|2,odd><around*|(|<frac|n/3|1>|)>+T<rsub|2,odd><around*|(|<frac|n/3|3>|)>+T<rsub|2,odd><around*|(|<frac|n/3|5>|)>+T<rsub|2,odd><around*|(|<frac|n/3|7>|)>+\<ldots\>>>>>
</eqnarray*>
Characterize <math|T<rsub|k,odd><around*|(|n|)>>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|0,odd><around*|(|n|)>>|<cell|=>|<cell|1>>|<row|<cell|T<rsub|1,odd><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|i
\<leq\>n><rsub|i odd<rsup|>>T<rsub|0,odd><around*|(|<frac|n|i>|)>=<around*|\<lfloor\>|<frac|n+1|2>|\<rfloor\>>>>|<row|<cell|T<rsub|2,odd><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|i
\<leq\>n><rsub|i odd>T<rsub|1,odd><around*|(|<frac|n|i>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3,odd><around*|(|n|)>>|<cell|=>|<cell|6*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><big|sum><rsub|z\<less\>x\<leq\><sqrt|n/z>,z
odd><around*|(|<frac|<around*|\<lfloor\>|<frac|n/z|x>|\<rfloor\>>+1|2>-<frac|z+1|2>|)>>>|<row|<cell|>|<cell|->|<cell|3*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><around*|(|<frac|<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>+1|2>-<frac|z+1|2>|)><rsup|2>>>|<row|<cell|>|<cell|+>|<cell|3*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><around*|(|<frac|<around*|\<lfloor\>|<frac|n|z<rsup|2>>|\<rfloor\>>+1|2>-<frac|z+1|2>|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|>1>>|<row|<cell|>|<cell|=>|<cell|6*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|>S<rsub|odd><around*|(|<frac|n|z>,z+2,<sqrt|<frac|n|z>>|)>>>|<row|<cell|>|<cell|->|<cell|3*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><around*|(|<frac|<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>+1|2>|)><rsup|2>>>|<row|<cell|>|<cell|<rsub|+>>|<cell|6*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><frac|z+1|2>*<frac|<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>+1|2>>>|<row|<cell|>|<cell|->|<cell|3*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><around*|(|<frac|z-1|2>|)><rsup|2>*>>|<row|<cell|>|<cell|->|<cell|6*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><frac|z+1|2>*<frac|<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>+1|2>>>|<row|<cell|>|<cell|+>|<cell|6*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><around*|(|<frac|z+1|2>|)><rsup|2>*>>|<row|<cell|>|<cell|+>|<cell|3*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><frac|<around*|\<lfloor\>|<frac|n|z<rsup|2>>|\<rfloor\>>+1|2>>>|<row|<cell|>|<cell|->|<cell|3**<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><frac|z+1|2>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|>1>>|<row|<cell|>|<cell|=>|<cell|3*<big|sum><rsub|z\<leq\><sqrt|n,|3>z
odd><rsup|><around*|(|2*S<rsub|odd><around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>,z+2,<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>|)>-<around*|(|<frac|<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>+1|2>|)><rsup|2>+<frac|<around*|\<lfloor\>|<frac|n|z<rsup|2>>|\<rfloor\>>+1|2>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>+1|2>|\<rfloor\>><rsup|3>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|3*<big|sum><rsub|z=1><rsup|<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>>><around*|(|2*S<around*|(|<around*|\<lfloor\>|<frac|n|z>|\<rfloor\>>,z+1,<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>>|)>-<around*|\<lfloor\>|<sqrt|<frac|n|z>>|\<rfloor\>><rsup|2>+<around*|\<lfloor\>|<frac|n|z<rsup|2>>|\<rfloor\>>|)>+<around*|\<lfloor\>|<sqrt|n|3>|\<rfloor\>><rsup|3>>>>>
</eqnarray*>
Sum of <math|T<rsub|2><around*|(|n|)>> correction term modulo 2.
<\eqnarray*>
<tformat|<table|<row|<cell|S<around*|(|n;a,b|)>>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>i\<leq\>b><around*|\<lfloor\>|<frac|n|i>|\<rfloor\>>>>>>
</eqnarray*>
<\equation*>
T<rsub|2><around*|(|n|)>=2*<big|sum><rsub|i=1><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><around*|\<lfloor\>|<frac|n|i>|\<rfloor\>>-<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|2><around*|(|n|)>>|<cell|=>|<cell|2*<big|sum><rsub|i=1><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><around*|\<lfloor\>|<frac|n|i>|\<rfloor\>>-<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>>>|<row|<cell|>|<cell|=>|<cell|2*S<around*|(|n;1,<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|)>-<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d<rsup|>=1><rsup|m>\<mu\><around*|(|d|)><around*|\<lfloor\>|<frac|m|d>|\<rfloor\>><rsup|2>>|<cell|=>|<cell|<big|sum><rsup|m><rsub|i=1>i<rsup|2>*<big|sum><rsup|<around*|\<lfloor\>|m/i|\<rfloor\>>><rsub|j=<around*|\<lfloor\>|m/<around*|(|i+1|)>|\<rfloor\>>+1>\<mu\><around*|(|j|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|m><rsub|i=1>i<rsup|2>*<around*|(|M<around*|(|<around*|\<lfloor\>|m/i|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|m/<around*|(|i+1|)>|\<rfloor\>>|)>|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<big|sum><rsub|i
odd><around*|(|M<around*|(|<around*|\<lfloor\>|m/i|\<rfloor\>>|)>-M<around*|(|<around*|\<lfloor\>|m/<around*|(|i+1|)>|\<rfloor\>>|)>|)>
<around*|(|mod 4|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|M<around*|(|m|)>-M<around*|(|<frac|m|2>|)>+M<around*|(|<frac|m|3>|)>-M<around*|(|<frac|m|4>|)>+\<ldots\>
<around*|(|mod 4|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<big|sum><rsub|i=1><rsup|m><around*|(|-1|)><rsup|i+1>*M<around*|(|<frac|m|i>|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|-1
<around*|(|mod 4|)>,m\<geq\>2>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|F<rsub|2><around*|(|n|)>>|<cell|=>|<cell|<around*|(|<big|sum><rsub|d<rsup|>\<leq\><sqrt|n>>\<mu\><around*|(|d|)>*T<rsub|2><around*|(|<frac|n|d<rsup|2>>|)>-1|)>/2>>|<row|<cell|>|<cell|=>|<cell|<around*|[|<big|sum><rsub|d<rsup|>\<leq\><sqrt|n><rsup|>>\<mu\><around*|(|d|)>*<around*|(|2*S<around*|(|<frac|n|d<rsup|2>>;1,<sqrt|<frac|n|d<rsup|2>>>|)>-<around*|\<lfloor\>|<sqrt|n/d<rsup|2>>|\<rfloor\>><rsup|2>|)>-1|]>/2>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|>\<leq\><sqrt|n>>\<mu\><around*|(|d|)>*S<around*|(|<frac|n|d<rsup|2>>;1,<sqrt|<frac|n|d<rsup|2>>>|)>-<around*|(|<big|sum><rsub|d<rsup|>\<leq\><sqrt|n><rsup|>>\<mu\><around*|(|d|)><around*|\<lfloor\>|<frac|<sqrt|n>|d>|\<rfloor\>><rsup|2>+1|)>/2>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<big|sum><rsub|d<rsup|>\<leq\><sqrt|n><rsup|>>\<mu\><around*|(|d|)>*S<around*|(|<frac|n|d<rsup|2>>;1,<sqrt|<frac|n|d<rsup|2>>>|)>-<around*|(|-1+1|)>/2
<around*|(|mod 2|)>,n\<geq\>4>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<big|sum><rsub|d<rsup|>\<leq\><sqrt|n><rsup|>>\<mu\><around*|(|d|)>*S<around*|(|<frac|n|d<rsup|2>>;1,<sqrt|<frac|n|d<rsup|2>>>|)>
<around*|(|mod 2|)>,n\<geq\>4>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsup|><rsub|2,odd><around*|(|n|)>=<big|sum><rsub|x:x\<leq\>n,x
odd>\<tau\><rsub|2><around*|(|x|)>>|<cell|=>|<cell|<big|sum><rsub|x:x\<leq\><sqrt|n>,x
odd><around*|(|<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>+<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>
mod 2|)>-<around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>+1|2>|\<rfloor\>>|)><rsup|2>>>|<row|<cell|>|<cell|=>|<cell|2*<big|sum><rsub|x:x\<leq\><sqrt|n>,x
odd><around*|(|<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<around*|\<lfloor\>|<frac|n|2x>|\<rfloor\>>|)>-<around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>+1|2>|\<rfloor\>>|)><rsup|2>>>|<row|<cell|>|<cell|=>|<cell|2*<big|sum><rsub|x:x\<leq\><sqrt|n>,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-2*<big|sum><rsub|x:x\<leq\><sqrt|n>,x
odd><around*|\<lfloor\>|<frac|n|2x>|\<rfloor\>>-<around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>+1|2>|\<rfloor\>>|)><rsup|2>>>|<row|<cell|>|<cell|=>|<cell|2*<big|sum><rsub|x:x\<leq\><sqrt|n>,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-2*<big|sum><rsub|x:x\<leq\><sqrt|n>,x
odd><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>-<around*|(|<around*|\<lfloor\>|<frac|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>+1|2>|\<rfloor\>>|)><rsup|2>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|2,odd><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>>>|<row|<cell|<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>>>|<row|<cell|<big|sum><rsub|x
even><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|*T<rsub|2><around*|(|<frac|n|2>|)>>>|<row|<cell|T<rsub|2><around*|(|n|)>=<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>+<big|sum><rsub|x
even><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>+*T<rsub|2><around*|(|<frac|n|2>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+2*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>-T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>>>|<row|<cell|<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>>|<cell|=>|<cell|*T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>-T<rsub|2><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>>>|<row|<cell|<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|T<rsub|2,odd><around*|(|n|)>+T<rsub|2,odd><around*|(|<frac|n|2>|)>+<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n/4|x>|\<rfloor\>>>>|<row|<cell|<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|k=0>T<rsub|2,odd><around*|(|<frac|n|2<rsup|k>>|)>>>|<row|<cell|T<rsub|2,odd><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|k=1>T<rsub|2,odd><around*|(|<frac|n|2<rsup|k>>|)>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|1,odd><around*|(|n|)>>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|n+1|2>|\<rfloor\>>=<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>+<around*|\<lfloor\>|n|\<rfloor\>>
mod 2>>|<row|<cell|T<rsub|2,odd><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|x\<leq\><sqrt|n>,x
odd>T<rsub|1,odd><around*|(|<frac|n|x>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n,x
odd><around*|(|<around*|\<lfloor\>|<frac|n|2*x>|\<rfloor\>>+<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>
mod 2|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|2*x>|\<rfloor\>>+<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>> mod
2>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>+<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>> mod
2>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n/2><around*|\<lfloor\>|<frac|n/2|x>|\<rfloor\>>-<big|sum><rsub|x\<leq\>n/4><around*|\<lfloor\>|<frac|n/4|x>|\<rfloor\>>+<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>> mod
2>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2><around*|(|<frac|n|2>|)>-*T<rsub|2><around*|(|<frac|n|4>|)>+<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>> mod
2>>|<row|<cell|<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-*T<rsub|2><around*|(|<frac|n|2>|)>>>|<row|<cell|T<rsub|2,odd><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<big|sum><rsub|x\<leq\>n/2,x
odd><around*|\<lfloor\>|<frac|n/2|*x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-*T<rsub|2><around*|(|<frac|n|2>|)>-<around*|(|T<rsub|2><around*|(|<frac|n|2>|)>-T<rsub|2><around*|(|<frac|n|4>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-2*T<rsub|2><around*|(|<frac|n|2>|)>+T<rsub|2><around*|(|<frac|n|4>|)>>>|<row|<cell|T<rsub|2><around*|(|<frac|n|2>|)>-*T<rsub|2><around*|(|<frac|n|4>|)>+<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>> mod
2>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-2*T<rsub|2><around*|(|<frac|n|2>|)>+T<rsub|2><around*|(|<frac|n|4>|)>>>|<row|<cell|<big|sum><rsub|x\<leq\>n,x
odd><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>> mod
2>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-3*T<rsub|2><around*|(|<frac|n|2>|)>+2*T<rsub|2><around*|(|<frac|n|4>|)>>>|<row|<cell|<big|sum><rsub|x\<leq\>n,x
mod 3\<neq\>0><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-T<rsub|2><around*|(|<frac|n|3>|)>>>|<row|<cell|T<rsub|2,3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n,x
mod 3\<neq\>0><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<big|sum><rsub|x\<leq\>n/3,x
mod 3\<neq\>0><around*|\<lfloor\>|<frac|n/3|*x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-T<rsub|2><around*|(|<frac|n|3>|)>-<around*|(|T<rsub|2><around*|(|<frac|n|3>|)>-T<rsub|2><around*|(|<frac|n|9>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-2*T<rsub|2><around*|(|<frac|n|3>|)>+T<rsub|2><around*|(|<frac|n|9>|)>>>>>
</eqnarray*>
\;
<with|gr-mode|<tuple|edit|line>|gr-frame|<tuple|scale|1cm|<tuple|0.5gw|0.5gh>>|gr-geometry|<tuple|geometry|1par|0.6par>|gr-grid|<tuple|cartesian|<point|0|0>|1>|gr-grid-old|<tuple|cartesian|<point|0|0>|1>|gr-edit-grid-aspect|<tuple|<tuple|axes|none>|<tuple|1|none>|<tuple|10|none>>|gr-edit-grid|<tuple|cartesian|<point|0|0>|1>|gr-edit-grid-old|<tuple|cartesian|<point|0|0>|1>|gr-auto-crop|true|<graphics||<line|<point|0|4>|<point|0.0|0.0>|<point|4.0|0.0>>|<spline|<point|0.146187731040926|4.2>|<point|0.5|2.2>|<point|2.5|0.6>|<point|4.0|0.2>>|<line|<point|2.5|0>|<point|2.5|0.6>>>>
For <math|m\<geq\><sqrt|n>>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|m><rsub|x=1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>|<cell|=>|<cell|T<rsub|2><around*|(|n|)>-<big|sum><rsup|n><rsub|x=m+1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|n/m|\<rfloor\>>><rsub|x=1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>+2*<big|sum><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>><rsub|x=<around*|\<lfloor\>|n/m|\<rfloor\>>+1><around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>-<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>+m*<around*|\<lfloor\>|<frac|n|m>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|S<around*|(|n;1,<around*|\<lfloor\>|<frac|n|m>|\<rfloor\>>|)>+2*S<around*|(|n;<around*|\<lfloor\>|<frac|n|m>|\<rfloor\>>+1,<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|)>+<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>><rsup|2>+m*<around*|\<lfloor\>|<frac|n|m>|\<rfloor\>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3,odd><around*|(|n|)>>|<cell|=>|<cell|f<around*|(|<frac|n|3>|)>+f<around*|(|<frac|n|5>|)>+f<around*|(|<frac|n|7>|)>+\<ldots\>+f<around*|(|<frac|n|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>>|)>>>|<row|<cell|>|<cell|+>|<cell|f<around*|(|<frac|n|3*5>|)>+f<around*|(|<frac|n|3*7>|)>+f<around*|(|<frac|n|3*9>|)>+\<ldots\>+f<around*|(|<frac|n|<sqrt|3*n>>|)>>>|<row|<cell|>|<cell|+>|<cell|f<around*|(|<frac|n|5*7>|)>+f<around*|(|<frac|n|5*9>|)>+f<around*|(|<frac|n|5*5>|)>+\<ldots\>+f<around*|(|<frac|n|<sqrt|5*n>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3,odd><around*|(|n|)>>|<cell|=>|<cell|f<around*|(|<frac|n|3>|)>+f<around*|(|<frac|n|5>|)>+f<around*|(|<frac|n|7>|)>+\<ldots\>+f<around*|(|<frac|n|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>>|)>>>|<row|<cell|>|<cell|+>|<cell|f<around*|(|<frac|n|3*5>|)>+f<around*|(|<frac|n|3*7>|)>+f<around*|(|<frac|n|3*9>|)>+\<ldots\>+f<around*|(|<frac|n|<sqrt|3*n>>|)>>>|<row|<cell|>|<cell|+>|<cell|f<around*|(|<frac|n|5*7>|)>+f<around*|(|<frac|n|5*9>|)>+f<around*|(|<frac|n|5*5>|)>+\<ldots\>+f<around*|(|<frac|n|<sqrt|5*n>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|int><rsub|1><rsup|n<rsup|1/4>><frac|<sqrt|z*n>-<sqrt|n>|z>
d z>|<cell|=>|<cell|<big|int><rsub|1><rsup|n<rsup|1/4>><sqrt|n>*<around*|(|<frac|1|<sqrt|z>>-<frac|1|z>|)>
d z>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|t<rsub|k><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|k><rsub|j=0><around*|(|-1|)><rsup|k+j><binom|k|j>*\<tau\><rsub|j><around*|(|n|)>>>|<row|<cell|t<rsub|0>*<around*|(|n|)>>|<cell|=>|<cell|\<tau\><rsub|0><around*|(|n|)>>>|<row|<cell|t<rsub|1><around*|(|n|)>>|<cell|=>|<cell|-\<tau\><rsub|0><around*|(|n|)>+\<tau\><rsub|1><around*|(|n|)>>>|<row|<cell|t<rsub|2><around*|(|n|)>>|<cell|=>|<cell|\<tau\><rsub|0><around*|(|n|)>-2*\<tau\><rsub|1><around*|(|n|)>+\<tau\><rsub|2><around*|(|n|)>>>|<row|<cell|t<rsub|3><around*|(|n|)>>|<cell|=>|<cell|-\<tau\><rsub|0><around*|(|n|)>+3*\<tau\><rsub|1><around*|(|n|)>-3*\<tau\><rsub|2><around*|(|n|)>+\<tau\><rsub|3><around*|(|n|)>>>|<row|<cell|\<tau\><rsub|0><around*|(|n|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|0>|<cell|if n\<gtr\>1>>>>>>>|<row|<cell|\<tau\><rsub|1><around*|(|n|)>>|<cell|=>|<cell|1>>|<row|<cell|\<tau\><rsub|2><around*|(|n|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|k=1><around*|(|a<rsub|k>+1|)>>>|<row|<cell|\<tau\><rsub|k><around*|(|n|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|k=1><binom|a<rsub|k>+k-1|k-1>=<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<tau\><rsub|k-1><around*|(|d|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<rsub|3><around*|(|n|)>>|<cell|=>|<cell|T<rsub|3,odd><around*|(|n|)>+3*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>-2*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|3,odd><around*|(|n|)>+3*T<rsub|3,odd><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>+9*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>-6*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|8>|\<rfloor\>>|)>-2*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|3,odd><around*|(|n|)>+3*T<rsub|3,odd><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>+7*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>-6*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|8>|\<rfloor\>>|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsub|3,odd><around*|(|n|)>+3*T<rsub|3,odd><around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>+7*T<rsub|3,odd><around*|(|<around*|\<lfloor\>|<frac|n|4>|\<rfloor\>>|)>+15*T<rsub|3><around*|(|<around*|\<lfloor\>|<frac|n|8>|\<rfloor\>>|)>-14*T<rsub|3><around*|(|<frac|n|16>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|a>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>>>|<row|<cell|b>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|2*n|x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|n|x>+<frac|n|x>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|2*<around*|\<lfloor\>|<frac|n|x>|\<rfloor\>>+<around*|[|2*<around*|(|n
mod x|)>\<geq\> x|]>>>>>
</eqnarray*>
Attempt to calculate <math|T<rsub|2><around*|(|n|)>,T<rsub|2><around*|(|n/2|)>>
at the same time.
<\eqnarray*>
<tformat|<table|<row|<cell|S<around*|(|n;a,b|)>>|<cell|=>|<cell|2*S<around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>;a,b|)>+<big|sum><rsub|a\<leq\>x\<leq\>b,2*<around*|(|n
mod x|)>\<geq\> x>1>>|<row|<cell|S<around*|(|n;1,<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|)>>|<cell|=>|<cell|2*S<around*|(|<around*|\<lfloor\>|<frac|n|2>|\<rfloor\>>|)>;1,<around*|\<nobracket\>|<around*|\<lfloor\>|<sqrt|<frac|n|2>>|\<rfloor\>>|)>+S<around*|(|n;<around*|\<lfloor\>|<sqrt|<frac|n|2>>|\<rfloor\>>+1,<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|)>+<big|sum><rsub|x\<leq\><around*|\<lfloor\>|<sqrt|n/2>|\<rfloor\>>,2*<around*|(|n
mod x|)>\<geq\> x>1>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|x<rprime|'>>|<cell|=>|<cell|<frac|x+1|2>>>|<row|<cell|y<rprime|'>>|<cell|=>|<cell|<frac|y+1|2>>>|<row|<cell|x>|<cell|=>|<cell|2*x<rprime|'>-1>>|<row|<cell|y>|<cell|=>|<cell|2*y<rprime|'>-1>>|<row|<cell|x*y>|<cell|=>|<cell|n>>|<row|<cell|<around*|(|2*x<rprime|'>-1|)>*<around*|(|2*y<rprime|'>-1|)>>|<cell|=>|<cell|n>>>>
</eqnarray*>
Empirically <math|max<around*|(|a<rsub|i>|)>\<leq\>n<rsup|1/3>,max<around*|(|b<rsub|i>|)>\<leq\>n<rsup|1/6>,max<around*|(|c<rsub|i>|)>\<leq\>n<rsup|1/3>>.
Alternative derivation of Möbius inversion of of
<math|F<rsub|3><around*|(|n|)>> after Edwards.
Use the substitution <math|f<around*|(|n|)>\<rightarrow\>f<around*|(|n|)>-p*f<around*|(|n<rsup|1/p>|)>>
on both sides for <math|p=2,3,5,7,\<ldots\>>
<\eqnarray*>
<tformat|<table|<row|<cell|F<rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|a=1>a*\<pi\><around*|(|<around*|\<lfloor\>|n<rsup|1/a>|\<rfloor\>>|)>>>|<row|<cell|F<rsub|3><around*|(|n|)>>|<cell|=>|<cell|*\<pi\><around*|(|n|)>+2*\<pi\><around*|(|*n<rsup|1/2>|)>+3*\<pi\><around*|(|*n<rsup|1/3>|)>+\<ldots\>>>|<row|<cell|F<rsub|3><around*|(|n|)>-2F<rsub|3><around*|(|n<rsup|1/2>|)>>|<cell|=>|<cell|\<pi\><around*|(|n|)>+3\<pi\><around*|(|n<rsup|1/3>|)>+5*\<pi\>*<around*|(|n<rsup|1/5>|)>+\<ldots\>>>|<row|<cell|F<rsub|3><around*|(|n|)>-2F<rsub|3><around*|(|n<rsup|1/2>|)>-3F<rsub|3><around*|(|n<rsup|1/3>|)>+6F<rsub|3><around*|(|n<rsup|1/6>|)>>|<cell|=>|<cell|\<pi\><around*|(|n|)>+5*\<pi\><around*|(|n<rsup|1/5>|)>+7*\<pi\><around*|(|n<rsup|1/7>|)>+\<ldots\>>>|<row|<cell|<big|sum><rsup|<around*|\<lfloor\>|log<rsub|2>
n|\<rfloor\>>><rsub|a=1>\<mu\><around*|(|a|)>*F<rsub|3><around*|(|n|)>>|<cell|=>|<cell|\<pi\><around*|(|n|)>>>>>
</eqnarray*>
because the left hand side consists only of primes and prime products with
the sign depending on the number of prime factors and the right hand side
terms eventually all be zero.
How to show these three different formulations are equivalent (confirmed
empirically)?
<\eqnarray*>
<tformat|<table|<row|<cell|2<rsup|\<omega\><around*|(|n|)>>>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|n|d<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|><around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|d>|)>*\<tau\><around*|(|d<rsup|2>|)>>>>>
</eqnarray*>
First from Tao, second from Apostol, third from Wikipedia arithmetic
functions. \ Do they provide alternate formulas for computation?
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><around*|(|n|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|i=1><around*|(|a<rsub|i>+1|)>>>|<row|<cell|\<tau\><around*|(|n<rsup|2>|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|i=1><around*|(|2*a<rsub|i>+1|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d<rsup|><around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|d>|)>*\<tau\><around*|(|d<rsup|2>|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|<around*|(|2*a+1|)>-<around*|(|2*<around*|(|*a-1|)>+1|)>+0+\<ldots\>=2>|<cell|if
n=p<rsup|a>>>|<row|<cell|<big|prod><rsub|i=1><rsup|k>2>|<cell|if
n=p<rsub|1><rsup|a<rsub|1>>p<rsub|2><rsup|a<rsub|2>>\<ldots\>p<rsub|k<rsup|>><rsup|a<rsub|k>>>>>>>>>|<row|<cell|>|<cell|=>|<cell|2<rsup|\<omega\><around*|(|n|)>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>2<rsup|\<omega\><around*|(|n|)>>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a*b=n>\<mu\><rsup|2><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\>x>\<mu\><rsup|2><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|<around*|\<lfloor\>|x|\<rfloor\>>><rsub|b=1><big|sum><rsup|<around*|\<lfloor\>|x/b|\<rfloor\>>><rsub|a=1>\<mu\><rsup|2><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|><rsub|n\<leq\>x>Q<around*|(|<frac|x|n>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d\<leq\><sqrt|n>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|x/n|d<rsup|2>>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|n>>\<mu\><around*|(|d|)><big|sum><rsub|n\<leq\>x><around*|\<lfloor\>|<frac|x/d<rsup|2>|n>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|n>>\<mu\><around*|(|d|)>*T<around*|(|<around*|\<lfloor\>|<frac|x|d<rsup|2>>|\<rfloor\>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|Q<around*|(|x|)>>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|x|d<rsup|2>>|\<rfloor\>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a<rsup|2>*b\<leq\>x>\<mu\><around*|(|a|)>*>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<rsup|2>*b=n>\<mu\><around*|(|a|)>*>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|a|)>*>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x>\<mu\><rsup|2><around*|(|a|)>>>>>
</eqnarray*>
because
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|a<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|a|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|1>|<cell|if n=p>>|<row|<cell|1-1+0+\<ldots\>=0>|<cell|if
n=p<rsup|a>,a\<geq\>2>>|<row|<cell|<big|prod><rsup|k><rsub|i=1><around*|[|a<rsub|i>=1|]>>|<cell|if
n=p<rsub|1><rsup|a<rsub|1>>p<rsub|2><rsup|a<rsub|2>>\<ldots\>p<rsub|k<rsup|>><rsup|a<rsub|k>>>>>>>
>>|<row|<cell|>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n is squarefree>>|<row|<cell|0>|<cell|otherwise>>>>>>>|<row|<cell|>|<cell|=>|<cell|\<mu\><rsup|2><around*|(|n|)>>>>>
</eqnarray*>
Continuing the process
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|a<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|a|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|1>|<cell|if n=p or n=p<rsup|2>>>|<row|<cell|1-1+0+\<ldots\>=0>|<cell|if
n=p<rsup|a>,a\<geq\>3>>|<row|<cell|<big|prod><rsub|i=1<rsup|>><rsup|k><around*|[|a<rsub|i\<leq\>2>|]>>|<cell|if
n=p<rsub|1><rsup|a<rsub|1>>p<rsub|2><rsup|a<rsub|2>>\<ldots\>p<rsub|k<rsup|>>>>>>>>>|<row|<cell|>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1
in n is cubefree>>|<row|<cell|0 otherwise>>>>>>>>>
</eqnarray*>
which doesn't appear to have a simple equivalent.
Bell series
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|\<infty\>><rsub|n=0>x<rsup|n><rsub|>>|<cell|=>|<cell|<frac|1|1-x>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsup|\<infty\>><rsub|n=1>x<rsup|n><rsub|>>|<cell|=>|<cell|<big|sum><rsup|\<infty\>><rsub|n=0>x<rsup|n><rsub|>-1>>|<row|<cell|>|<cell|=>|<cell|<frac|1|1-x>-1>>|<row|<cell|>|<cell|=>|<cell|<frac|1|1-x>-<frac|1-x|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|x|1-x>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>>k*x<rsup|2>>|<cell|=>|<cell|x+2*x<rsup|2>+3*x<rsup|3>+4*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|x*<around*|(|1+2*x<rsup|>+3*x<rsup|2>+4*x<rsup|3>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|x*<around*|(|x<rsup|>+2*x<rsup|2>+3*x<rsup|3>+\<ldots\>+<around*|(|1+x+x<rsup|2>+x<rsup|3>+\<ldots\>.|)>|)>>>|<row|<cell|>|<cell|=>|<cell|x*<around*|(|<big|sum><rsub|k=1><rsup|\<infty\>>k*x<rsup|2>+<frac|1|1-x>|)>>>|<row|<cell|<around*|(|<big|sum><rsub|k=1><rsup|\<infty\>>k*x<rsup|2>*|)><around*|(|1-x|)>>|<cell|=>|<cell|<frac|x|1-x>>>|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>>k*x<rsup|2>>|<cell|=>|<cell|<frac|x|<around*|(|1-x|)><rsup|2>>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>>|<cell|=>|<cell|x-x<rsup|2>+x<rsup|3>-x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|x-x<rsup|2>+x<rsup|3>-x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>-x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>>>|<row|<cell|>|<cell|=>|<cell|x-x<rsup|2>+x<rsup|3>-x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|x<rsup|2>-x<rsup|3>+x<rsup|4>-x<rsup|5>+\<ldots\>>>|<row|<cell|>|<cell|->|<cell|x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>>>|<row|<cell|>|<cell|=>|<cell|x-x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>>>|<row|<cell|<around*|(|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>|)>*<around*|(|1+x|)>>|<cell|=>|<cell|x>>|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>>|<cell|=>|<cell|<frac|x|1+x>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>>|<cell|=>|<cell|x-2*x<rsup|2>+3*x<rsup|3>-4*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|x-2*x<rsup|2>+3*x<rsup|3>-4*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>-x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>>>|<row|<cell|>|<cell|=>|<cell|x-2*x<rsup|2>+3*x<rsup|3>-4*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|x<rsup|2>-2*x<rsup|3>+3*x<rsup|4>-4*x<rsup|5>+\<ldots\>>>|<row|<cell|>|<cell|->|<cell|x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>>>|<row|<cell|>|<cell|=>|<cell|x-x<rsup|2>+x<rsup|3>-x<rsup|4>+\<ldots\>-x*<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>>>|<row|<cell|<around*|(|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>|)>*<around*|(|1+x|)>>|<cell|=>|<cell|<frac|x|1+x>>>|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>>|<cell|=>|<cell|<frac|x|<around*|(|1+x|)><rsup|2>>>>>>
</eqnarray*>
\;
<\equation*>
<block*|<tformat|<table|<row|<cell|<big|sum><rsup|\<infty\>><rsub|k=0>x<rsup|k><rsub|>>|<cell|1+x+x<rsup|2>+\<ldots\>>|<cell|<frac|1|1-x>>>|<row|<cell|<big|sum><rsup|\<infty\>><rsub|k=1>x<rsup|k><rsub|>>|<cell|x+x<rsup|2>+x<rsup|3>+\<ldots\>>|<cell|<frac|x|1-x>>>|<row|<cell|<big|sum><rsub|k=0><rsup|\<infty\>><around*|(|k+1|)>*x<rsup|k>>|<cell|1+2*x+3*x<rsup|2>+\<ldots\>>|<cell|<frac|1|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>>k*x<rsup|k>>|<cell|x+2*x<rsup|2>+3*x<rsup|3>+\<ldots\>>|<cell|<frac|x|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|<big|sum><rsub|k=0><rsup|\<infty\>><around*|(|-1|)><rsup|k>*x<rsup|k>>|<cell|1-x+x<rsup|2>-x<rsup|3>+\<ldots\>>|<cell|<frac|1|1+x>>>|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*x<rsup|k>>|<cell|x-x<rsup|2>+x<rsup|3>-\<ldots\>>|<cell|<frac|x|1+x>>>|<row|<cell|<big|sum><rsub|k=1><rsup|\<infty\>><around*|(|-1|)><rsup|k-1>*k*x<rsup|k>>|<cell|x-2*x<rsup|2>+3*x<rsup|3>-\<ldots\>>|<cell|<frac|x|<around*|(|1+x|)><rsup|2>>>>|<row|<cell|<big|sum><rsub|k=0><rsup|\<infty\>><around*|(|2*k+1|)>*x<rsup|k><rsub|>>|<cell|1+3*x+5*x<rsup|2>+7*x<rsup|3>+\<ldots\>>|<cell|<frac|1+x|<around*|(|1-x<rsup|>|)><rsup|2>>>>|<row|<cell|<big|sum><rsub|k=0><rsup|\<infty\>><around*|(|k+1|)><rsup|2>*x<rsup|k>>|<cell|1+4*x+9*x<rsup|2>+16*x<rsup|3>+\<ldots\>>|<cell|<frac|1+x|<around*|(|1-x|)><rsup|3>>>>>>>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<around*|(|n|)>>|<cell|=>|<cell|q<rsup|\<omega\><around*|(|n|)>><space|1em>for
all q\<in\>\<bbb-Z\>>>|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|a=0><rsup|\<infty\>>f<around*|(|p<rsup|a>|)>x<rsup|a>>>|<row|<cell|>|<cell|=>|<cell|1+q*x+q*x<rsup|2>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+q*<around*|(|-1+1+x+x<rsup|2>+x<rsup|3>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|1+q*<around*|(|-1+<frac|1|1-x>|)>>>|<row|<cell|>|<cell|=>|<cell|1+q*<around*|(|<frac|1-<around*|(|1-x|)>|1-x>|)>>>|<row|<cell|>|<cell|=>|<cell|1+<frac|q*x|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|q*x+<around*|(|1-x|)>|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+<around*|(|q-1|)>*x|1-x>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|><around*|(|n|)>>|<cell|=>|<cell|q<rsup|\<Omega\><around*|(|n|)>><space|1em>for
all q\<in\>\<bbb-Z\>>>|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|a=0><rsup|\<infty\>>f<around*|(|p<rsup|a>|)>x<rsup|a>>>|<row|<cell|>|<cell|=>|<cell|1+q*x+q<rsup|2*>x<rsup|2>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<frac|1|1-q*x>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|3><around*|(|<frac|n|d<rsup|3>>|)>>>|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|1+3*x+6*x<rsup|2>+9*x<rsup|3>+12*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+3*<around*|(|x+2*x<rsup|2>+3*x<rsup|3>+4*x<rsup|4>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|1+3*<frac|x|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-2*x+x<rsup|2>+3*x|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+*x+x<rsup|2>|<around*|(|1-x|)><rsup|2>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|1+3*x+9*x<rsup|2>+9*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+3*x+9*x*<around*|(|x+x<rsup|2>+x<rsup|3>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|1+3*x+9*x<frac|x|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|<around*|(|1-x|)>+3*x*<around*|(|1-x|)>+9*x<rsup|2>|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-x+3*x-3x<rsup|2>+9*x<rsup|2>|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+2*x+6*x<rsup|2>|1-x>>>|<row|<cell|f<around*|(|n|)>>|<cell|=>|<cell|?>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|n>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|i=1>p<rsub|i><rsup|a<rsub|i>>>>|<row|<cell|\<Lambda\><around*|(|n|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|i=1>a<rsub|i>>>|<row|<cell|f<around*|(|n|)>>|<cell|=>|<cell|3<rsup|\<omega\><around*|(|n|)>>*\<Lambda\><around*|(|n|)>*\<lambda\><around*|(|n|)>>>|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|1-3*x+6*x<rsup|2>-9*x<rsup|3>+12*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1-3*<around*|(|x-2*x<rsup|2>+3*x<rsup|3>-4*x<rsup|4>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|1-<frac|3x|<around*|(|1+x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+2*x+x<rsup|2>-3*x|<around*|(|1+x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-x+x<rsup|2>|<around*|(|1+x|)><rsup|2>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|(|\<lambda\>\<star\>\<lambda\>|)><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<lambda\><around*|(|d|)>*\<lambda\><around*|(|<frac|n|d>|)>>>|<row|<cell|>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|<big|sum><rsub|k=0><rsup|a><around*|(|-1|)><rsup|k>*<around*|(|-1|)><rsup|a-k>>|<cell|if
n=p<rsup|a>>>>>>>>|<row|<cell|>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|<big|sum><rsub|k=0><rsup|a><around*|(|-1|)><rsup|a>>|<cell|if
n=p<rsup|a>>>>>>>>|<row|<cell|>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|<around*|(|a+1|)><around*|(|-1|)><rsup|a>>|<cell|if
n=p<rsup|a>>>>>>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|n|)>*\<lambda\><around*|(|n|)><space|1em><around*|(|verified|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|1+x+x<rsup|2>>>|<row|<cell|f<around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>>>>
</eqnarray*>
\;
<\equation*>
<block*|<tformat|<table|<row|<cell|f<around*|(|n|)>>|<cell|meaning>|<cell|f<rsub|p><around*|(|n|)>>>|<row|<cell|\<mu\><around*|(|n|)>>|<cell|<choice|<tformat|<table|<row|<cell|<around*|(|-1|)><rsup|\<omega\><around*|(|n|)>>>|<cell|if
\<omega\><around*|(|n|)>=\<Omega\><around*|(|n|)>>>|<row|<cell|0>|<cell|otherwise>>>>>>|<cell|1-x>>|<row|<cell|\<delta\><around*|(|n|)>>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|0>|<cell|otherwise>>>>>=\<tau\><rsub|0><around*|(|n|)>>|<cell|1>>|<row|<cell|\<lambda\><around*|(|n|)>>|<cell|<around*|(|-1|)><rsup|\<Omega\><around*|(|n|)>>>|<cell|<frac|1|1+x>>>|<row|<cell|\<lambda\><around*|(|n|)>*\<tau\><around*|(|n|)>>|<cell|<around*|(|\<lambda\>\<star\>\<lambda\>|)><around*|(|n|)>>|<cell|<frac|1|<around*|(|1+x|)><rsup|2>>>>|<row|<cell|Id<rsub|k><around*|(|n|)>>|<cell|n<rsup|k>>|<cell|<frac|1|1-p<rsup|k>*x>>>|<row|<cell|Id<rsub|0><around*|(|n|)>>|<cell|1=\<tau\><rsub|1><around*|(|n|)>>|<cell|<frac|1|1-x>>>|<row|<cell|\<sigma\><rsub|k><around*|(|n|)>>|<cell|>|<cell|<frac|1|1-<around*|(|1+p<rsup|k>|)>*x+p<rsup|k>*x<rsup|2>>>>|<row|<cell|\<tau\><rsub|k><around*|(|n|)>>|<cell|<around*|(|\<tau\><rsub|k-1>\<star\>Id<rsub|o>|)><around*|(|n|)>>|<cell|<frac|1|<around*|(|1-x|)><rsup|k>>>>|<row|<cell|\<tau\><around*|(|n|)>>|<cell|\<sigma\><rsub|0><around*|(|n|)>=\<tau\><rsub|2><around*|(|n|)>>|<cell|<frac|1|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|\<mu\><rsup|2><around*|(|n|)>>|<cell|\<lambda\><rsup|-1><around*|(|n|)>>|<cell|1+x>>|<row|<cell|q<rsup|\<omega\><around*|(|n|)>>>|<cell|>|<cell|<frac|1+<around*|(|q-1|)>*x|1-x>>>|<row|<cell|q<rsup|\<Omega\><around*|(|n|)>>>|<cell|>|<cell|<frac|1|1-q*x>>>|<row|<cell|2<rsup|\<omega\><around*|(|n|)>>>|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|><around*|(|<frac|n|d<rsup|2>>|)>>|<cell|<frac|1+x|1-x>>>|<row|<cell|<around*|(|-2|)><rsup|\<omega\><around*|(|n|)>>>|<cell|>|<cell|<frac|1-3x|1-x>>>|<row|<cell|\<mu\><rsup|2><around*|(|n|)>*2<rsup|\<omega\><around*|(|n|)>>>|<cell|\<mu\><rsup|2><around*|(|n|)>*\<tau\><around*|(|n|)>>|<cell|1+2*x>>|<row|<cell|3<rsup|\<omega\><around*|(|n|)>>>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*\<tau\><around*|(|d|)>>|<cell|<frac|1+2*x|1-x>>>|<row|<cell|<around*|(|-3|)><rsup|\<omega\><around*|(|n|)>>>|<cell|>|<cell|<frac|1-4*x|1-x>>>|<row|<cell|\<mu\><around*|(|n|)>*q<rsup|\<omega\><around*|(|n|)>>>|<cell|\<mu\><rsup|><around*|(|n|)>*\<tau\><rsub|q><around*|(|n|)>>|<cell|1-q*x>>|<row|<cell|\<mu\><rsup|2><around*|(|n|)>*q<rsup|\<omega\><around*|(|n|)>>>|<cell|\<mu\><rsup|2><around*|(|n|)>*\<tau\><rsub|q><around*|(|n|)>>|<cell|1+q*x>>|<row|<cell|<big|sum><rsub|d<rsup|k><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>|<cell|Q<rsub|k><around*|(|n|)>>|<cell|<frac|1-x<rsup|k>|1-x>=1+x+x<rsup|2>+\<ldots\>+x<rsup|k-1>>>|<row|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>|<cell|\<mu\><rsup|2><around*|(|n|)>=<around*|\||\<mu\><around*|(|n|)>|\|>=Q<rsub|2><around*|(|n|)>>|<cell|1+x>>|<row|<cell|<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>|<cell|Q<rsub|3><around*|(|n|)>>|<cell|1+x+x<rsup|2>>>|<row|<cell|\<lambda\><around*|(|n|)><big|sum><rsub|d<rsup|k><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>|<cell|>|<cell|1-x+x<rsup|2>-\<ldots\>\<pm\>x<rsup|k>>>|<row|<cell|\<lambda\><around*|(|n|)>*<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>|<cell|>|<cell|1-x>>|<row|<cell|\<lambda\><around*|(|n|)>*<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>|<cell|>|<cell|1-x+x<rsup|2>>>|<row|<cell|<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|3><around*|(|<frac|n|d<rsup|3>>|)>>|<cell|>|<cell|<frac|1+*x+x<rsup|2>|<around*|(|1-x|)><rsup|2>>=<frac|1-x<rsup|3>|<around*|(|1-x|)><rsup|3>>>>|<row|<cell|\<tau\><around*|(|n<rsup|2>|)>>|<cell|>|<cell|<frac|1+x|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|\<tau\><rsup|2><around*|(|n|)>>|<cell|>|<cell|<frac|1+x|<around*|(|1-x|)><rsup|3>>>>|<row|<cell|\<mu\><rsub|2><around*|(|n|)>>|<cell|<choice|<tformat|<table|<row|<cell|\<mu\><around*|(|m|)>>|<cell|if
n=m<rsup|2>>>|<row|<cell|0>|<cell|otherwise>>>>>>|<cell|1-x<rsup|2>>>|<row|<cell|\<mu\><rsub|k><around*|(|n|)>>|<cell|<choice|<tformat|<table|<row|<cell|\<mu\><around*|(|m|)>>|<cell|if
n=m<rsup|k>>>|<row|<cell|0>|<cell|otherwise>>>>>>|<cell|1-x<rsup|k>>>|<row|<cell|\<tau\><around*|(|n<rsup|3>|)>>|<cell|>|<cell|<frac|1+2*x|<around*|(|1-x|)><rsup|2>>>>>>>
</equation*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*2<rsup|\<omega\><around*|(|d|)>>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|1+2+0+\<ldots\>=3>|<cell|if
n=p<rsup|a>>>>>>>>|<row|<cell|>|<cell|=>|<cell|3<rsup|\<omega\><around*|(|n|)>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*<big|sum><rsub|a<rsup|2><around*|\||d|\<nobracket\>>>\<mu\><around*|(|a|)>*\<tau\><around*|(|<frac|d|a<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b=n>\<mu\><rsup|2><around*|(|a|)>*<big|sum><rsub|c<rsup|2>*d=a>\<mu\><around*|(|c|)>*\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<rsup|<rsup|>><big|sum><rsub|a*b=n>\<mu\><rsup|2><around*|(|a|)>*<big|sum><rsub|d=a>*\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*\<tau\><around*|(|d|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d<rsup|2>*b\<leq\>x>\<tau\><around*|(|d<rsup|2>*b|)>>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>><big|sum><rsub|b\<leq\>x/d<rsup|2>>\<tau\><around*|(|d<rsup|2>*b|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><around*|(|n|)>*2<rsup|\<omega\><around*|(|n|)>>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><around*|(|n|)><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><around*|(|n|)><big|sum><rsub|d<around*|\||n|\<nobracket\>>><big|sum><rsub|a<rsup|2><around*|\||d|\<nobracket\>>>\<mu\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b*c\<leq\>x>\<mu\><around*|(|b*c|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><around*|(|n|)>*\<tau\><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><around*|(|n|)><big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|n|d<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*<rsup|2>b\<leq\>x>\<mu\><around*|(|a<rsup|2>*b|)>*\<mu\><around*|(|a|)>*\<tau\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><around*|(|n|)>**\<tau\><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b*\<leq\>x><big|sum><rsub|c\<leq\>x/b>\<mu\><around*|(|b*c|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b*\<leq\>x><big|sum><rsub|c\<leq\>x/b,<around*|(|b,c|)>=1>\<mu\><around*|(|b|)>*\<mu\><around*|(|c|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b*\<leq\>x>\<mu\><around*|(|b|)><big|sum><rsub|c\<leq\>x/b,<around*|(|b,c|)>=1>*\<mu\><around*|(|c|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>3<rsup|\<omega\><around*|(|n|)>>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*2<rsup|\<omega\><around*|(|d|)>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*<big|sum><rsub|a<rsup|2><around*|\||d|\<nobracket\>>>\<mu\><around*|(|a|)>*\<tau\><around*|(|<frac|d|a<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a*b=n>\<mu\><rsup|2><around*|(|a|)>*<big|sum><rsub|c<rsup|2>*d=a>\<mu\><around*|(|c|)>*\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<rsup|2>*b*c=n>\<mu\><rsup|2><around*|(|a<rsup|2>*b|)>*\<mu\><around*|(|a|)>*\<tau\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<rsup|>*b=n>\<mu\><rsup|2><around*|(|*a|)>**\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a<rsup|>*b\<leq\>x>\<mu\><rsup|2><around*|(|*a|)>**\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x>\<mu\><rsup|2><around*|(|a|)><big|sum><rsub|b\<leq\>x/a>\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x>\<mu\><rsup|2><around*|(|a|)>*\<tau\><around*|(|a|)>*<around*|\<lfloor\>|<frac|x|a>|\<rfloor\>><space|1em><around*|(|verified|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|*a|)>**\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<around*|\||n|\<nobracket\>>>\<tau\><around*|(|a|)><big|sum><rsub|d<rsup|2><around*|\||a|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<rsup|2>b*c=n>\<tau\><around*|(|a<rsup|2>*b|)>*\<mu\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a<rsup|2>*b*c\<leq\>x>\<tau\><around*|(|a<rsup|2>*b|)>*\<mu\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\><sqrt|x>>\<mu\><around*|(|a|)><big|sum><rsub|b\<leq\>x/a<rsup|2>>\<tau\><around*|(|a<rsup|2>*b|)><big|sum><rsub|c\<leq\>x/<around*|(|a<rsup|2>*b|)>>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\><sqrt|x>>\<mu\><around*|(|a|)>*<big|sum><rsub|b\<leq\>x/a<rsup|2>>\<tau\><around*|(|a<rsup|2>*b|)>*<around*|\<lfloor\>|<frac|x|a<rsup|2>*b>|\<rfloor\>><space|1em><around*|(|verified|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><rsup|2><around*|(|d|)>*<big|sum><rsub|a<around*|\||d|\<nobracket\>>>\<mu\><rsup|2><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a*b*c=n>\<mu\><rsup|2><around*|(|a*b|)>*\<mu\><rsup|2><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a*b*c=n>\<mu\><rsup|2><around*|(|a*b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\>x>\<mu\><rsup|2><around*|(|a*b|)><big|sum><rsub|c\<less\>x/<around*|(|a*b|)>>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*\<leq\>x><big|sum><rsub|b\<leq\>x/a>\<mu\><rsup|2><around*|(|a*b|)>*<around*|\<lfloor\>|<frac|x|a*b>|\<rfloor\>><space|1em><around*|(|verified|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a*b*c=n><big|sum><rsub|d<rsup|2><around*|\||a|\<nobracket\>>*b>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x>\<tau\><around*|(|a|)>*<around*|\<lfloor\>|<frac|x|a>|\<rfloor\>>*<big|sum><rsub|d<rsup|2><around*|\||a|\<nobracket\>>*>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|<rsup|>2>*b\<leq\>x>\<mu\><around*|(|d|)>*\<tau\><around*|(|d<rsup|2>*b|)>*<around*|\<lfloor\>|<frac|x|d<rsup|2>*b>|\<rfloor\>>*>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>>\<mu\><around*|(|d|)><big|sum><rsub|b\<leq\>x/d<rsup|2>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>\<mu\><rsup|2><around*|(|n|)>*\<tau\><rsub|3><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<tau\><rsub|3><around*|(|n|)>*<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a<rsup|2>*b\<leq\>x>\<mu\><around*|(|a|)>*\<tau\><rsub|3><around*|(|a<rsup|2>*b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\><sqrt|x>>\<mu\><around*|(|a|)>*<big|sum><rsub|b\<leq\>x/a<rsup|2>>\<tau\><rsub|3><around*|(|a<rsup|2>*b|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<mu\><rsup|2><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|d>|)>*2<rsup|\<omega\><around*|(|n|)>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a<around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|a>|)><big|sum><rsub|d<rsup|2><around*|\||a|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|a|d<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2>*b*c=n>\<mu\><around*|(|c|)>*\<mu\><around*|(|d|)>*\<tau\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*<big|sum><rsub|a<around*|\||n<rsup|>/d<rsup|2>|\<nobracket\>>>\<mu\><around*|(|a|)>*\<tau\><around*|(|<frac|n/d<rsup|2>|a>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*Id<rsub|0><around*|(|<frac|n|d<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|(|\<tau\>\<star\><around*|(|<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>|)>|)><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|a<around*|\||n|\<nobracket\>>>\<tau\><around*|(|a|)>*<big|sum><rsub|b<rsup|3><around*|\||n/a|\<nobracket\>>>\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b<rsup|3>*c=n>\<tau\><around*|(|a|)>*\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|b|)><big|sum><rsub|c<around*|\||n/b<rsup|3>|\<nobracket\>>>*\<tau\><around*|(|<frac|n|b<rsup|3>*c>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|b|)>*\<tau\><rsub|3><around*|(|<frac|n|b<rsup|3>>|)>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|(|<around*|(|\<lambda\><around*|(|n|)>*\<tau\><around*|(|n|)>|)>\<star\><around*|(|\<lambda\><around*|(|n|)>*<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>|)>|)><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|a*b=n>\<lambda\><around*|(|a|)>*\<tau\><around*|(|a|)>*\<lambda\><around*|(|b|)>*<big|sum><rsub|d<rsup|3><around*|\||b|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b=n>\<lambda\><around*|(|a*b|)>*\<tau\><around*|(|a|)>**<big|sum><rsub|d<rsup|3><around*|\||b|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b=n>\<lambda\><around*|(|n|)>*\<tau\><around*|(|a|)>**<big|sum><rsub|d<rsup|3><around*|\||b|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|\<lambda\><around*|(|n|)><big|sum><rsub|a*b=n>*\<tau\><around*|(|a|)>**<big|sum><rsub|d<rsup|3><around*|\||b|\<nobracket\>>>\<mu\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|\<lambda\><around*|(|n|)><big|sum><rsub|a*b<rsup|3>*c=n>*\<tau\><around*|(|a|)>*\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|\<lambda\><around*|(|n|)><big|sum><rsub|b<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|b|)>*<big|sum><rsub|c<around*|\|||\<nobracket\>>n/b<rsup|3>>\<tau\><around*|(|<frac|n|b<rsup|3>*c>|)>>>|<row|<cell|>|<cell|=>|<cell|\<lambda\><around*|(|n|)><big|sum><rsub|b<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|b|)>*\<tau\><rsub|3><around*|(|<frac|n|b<rsup|3>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\>x,d
odd>\<tau\><around*|(|d|)>>|<cell|=>|<cell|\<tau\><around*|(|1|)>+\<tau\><around*|(|3|)>+\<tau\><around*|(|5|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>x>\<tau\><around*|(|d|)>-<big|sum><rsub|d\<leq\>x,d
even>\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>x>\<tau\><around*|(|d|)>-<around*|(|\<tau\><around*|(|2|)>+\<tau\><around*|(|4|)>+\<tau\><around*|(|6|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>x>\<tau\><around*|(|d|)>-<around*|(|2*\<tau\><around*|(|1|)>+2*\<tau\><around*|(|3|)>+2*\<tau\><around*|(|5|)>+\<ldots\>+\<tau\><around*|(|4|)>+\<tau\><around*|(|8|)>+\<tau\><around*|(|12|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|T<around*|(|x|)>-2*T<around*|(|<frac|x|2>|)>+T<around*|(|<frac|x|4>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\>x/2<rsup|2>>\<tau\><around*|(|2<rsup|2>*d|)>>|<cell|=>|<cell|\<tau\><around*|(|4|)>+\<tau\><around*|(|8|)>+\<tau\><around*|(|12|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|4|)>*\<tau\><around*|(|*1|)>+*\<tau\><around*|(|8|)>+\<tau\><around*|(|4|)>*\<tau\><around*|(|3|)>+\<tau\><around*|(|16|)>+\<tau\><around*|(|4|)>*t<around*|(|5|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|4|)>*<around*|(|\<tau\><around*|(|1|)>+\<tau\><around*|(|3|)>+\<tau\><around*|(|5|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|+>|<cell|\<tau\>*<around*|(|8|)>+\<tau\><around*|(|16|)>+\<tau\><around*|(|24|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|4|)>*<big|sum><rsub|k\<leq\>d/4,k
odd>\<tau\><around*|(|k|)>+\<tau\><around*|(|8|)>*<big|sum><rsub|k\<leq\>d/8,k
odd>\<tau\><around*|(|k|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>i><around*|(|i+2|)>*<big|sum><rsub|k\<leq\>d/2<rsup|i+1>,k
odd>\<tau\><around*|(|k|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>i><around*|(|i+2|)>*<around*|(|T<around*|(|<frac|x|2<rsup|i+1>>|)>-2*T<around*|(|<frac|x/2|2<rsup|i+1>>|)>+T<around*|(|<frac|x/4|2<rsup|i+1>>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|3*T<around*|(|<frac|x|2<rsup|2>>|)>-2*T<around*|(|<frac|x|2<rsup|3>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p<rsup|2>*d|)>>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p<rsup|2>|)>*\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|->|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|2>|)>*\<tau\><around*|(|p*d|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|p<rsup|2>|)>*<around*|(|<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|d|)>-<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p*d|)>|)>+<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>>|<cell|=>|<cell|\<tau\><around*|(|p<rsup|3>|)>*<around*|(|<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|d|)>-<big|sum><rsub|d\<leq\>x/p<rsup|4>>\<tau\><around*|(|p*d|)>|)>+<big|sum><rsub|d\<leq\>x/p<rsup|4>>\<tau\><around*|(|p<rsup|4>*d|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|>>\<tau\><around*|(|p*d|)>>|<cell|=>|<cell|\<tau\><around*|(|p|)>*<around*|(|<big|sum><rsub|d\<leq\>x/p>\<tau\><around*|(|d|)>-<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p*d|)>|)>+<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p<rsup|2>*d|)>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|p|)>*<around*|(|<big|sum><rsub|d\<leq\>x/p>\<tau\><around*|(|d|)>-<around*|(|\<tau\><around*|(|p|)>*<around*|(|<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|d|)>-<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p*d|)>|)>+<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>|)>|)>+<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p<rsup|2>*d|)>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|p|)>*<big|sum><rsub|d\<leq\>x/p>\<tau\><around*|(|d|)>-\<tau\><rsup|2><around*|(|p|)>*<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|d|)>+\<tau\><rsup|2><around*|(|p|)>*<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p*d|)>-\<tau\><rsup|><around*|(|p|)>*<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>+\<tau\><around*|(|p<rsup|2>|)>*<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|d|)>-\<tau\><around*|(|p<rsup|2>|)>*<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p*d|)>+<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|p|)>*<big|sum><rsub|d\<leq\>x/p>\<tau\><around*|(|d|)>-<around*|(|\<tau\><rsup|2><around*|(|p|)>-\<tau\><around*|(|p<rsup|2>|)>|)>*<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|d|)>+<around*|(|\<tau\><rsup|2><around*|(|p|)>-\<tau\><around*|(|p<rsup|2>|)>|)>*<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p*d|)>-<around*|(|\<tau\><rsup|><around*|(|p|)>-1|)>*<big|sum><rsub|d\<leq\>x/p<rsup|3>>\<tau\><around*|(|p<rsup|3>*d|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\>x/p<rsup|>>\<tau\><around*|(|p*d|)>+\<tau\><around*|(|p|)>*<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p*d|)>>|<cell|=>|<cell|\<tau\><around*|(|p|)><big|sum><rsub|d\<leq\>x/p>\<tau\><around*|(|d|)>+<big|sum><rsub|d\<leq\>x/p<rsup|2>>\<tau\><around*|(|p<rsup|2>*d|)>>>|<row|<cell|F<rsub|p><around*|(|x|)>+\<tau\><around*|(|p|)>*F<rsub|p><around*|(|x/p|)>>|<cell|=>|<cell|\<tau\><around*|(|p|)>*T<around*|(|x/p|)>+F<rsub|p<rsup|2>><around*|(|x|)>>>|<row|<cell|F<rsub|p><around*|(|x|)>+\<tau\><around*|(|p|)>*F<rsub|p><around*|(|x/p|)>+\<tau\><around*|(|p<rsup|2>|)>*F<rsub|p><around*|(|x/p<rsup|2>|)>>|<cell|=>|<cell|\<tau\><around*|(|p|)>*T<around*|(|x/p|)>+\<tau\><around*|(|p<rsup|2>|)>*T<around*|(|x/p<rsup|2>|)>+F<rsub|p<rsup|3>><around*|(|x|)>>>|<row|<cell|<big|sum><rsub|0\<leq\>k\<leq\>log<rsub|p>
x>\<tau\><around*|(|p<rsup|k>|)>*F<rsub|p><around*|(|x/p<rsup|k>|)>>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x>\<tau\><around*|(|p<rsup|k>|)>*T<around*|(|x/p<rsup|k>|)>>>|<row|<cell|<big|sum><rsub|0\<leq\>k\<leq\>log<rsub|p>
x><around*|(|k+1|)>*F<rsub|p><around*|(|x/p<rsup|k>|)>>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x><around*|(|k+1|)>*T<around*|(|x/p<rsup|k>|)>>>|<row|<cell|F<rsub|p><around*|(|x|)>>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x><around*|(|k+1|)>*T<around*|(|x/p<rsup|k>|)>-<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x><around*|(|k+1|)>*F<rsub|p><around*|(|x/p<rsup|k>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x><around*|(|k+1|)>*T<around*|(|x/p<rsup|k>|)>-2*<around*|(|<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x/p><around*|(|k+1|)>*T<around*|(|x/p<rsup|k+1>|)>-<big|sum><rsub|1\<leq\>k\<leq\>log<rsub|p>
x/p><around*|(|k+1|)>*F<rsub|p><around*|(|x/p<rsup|k+1>|)>|)>-<big|sum><rsub|2\<leq\>k\<leq\>log<rsub|p>
x><around*|(|k+1|)>*F<rsub|p><around*|(|x/p<rsup|k>|)>>>|<row|<cell|>|<cell|=>|<cell|2*T<around*|(|x/p|)>+3*T<around*|(|x/p<rsup|2>|)>+4*T<around*|(|x/p<rsup|3>|)>+\<ldots\>>>|<row|<cell|>|<cell|->|<cell|4*T<around*|(|x/p<rsup|2>|)>-6*T<around*|(|x/p<rsup|3>|)>-8*T<around*|(|p/<rsup|4>|)>-\<ldots\>>>|<row|<cell|>|<cell|->|<cell|6*T<around*|(|x/p<rsup|3>|)>-9*T<around*|(|x/p<rsup|4>|)>-12*T<around*|(|p/<rsup|5>|)>-\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|2*T<around*|(|x/p|)>+<around*|(|3-2\<cdot\>2|)>*T<around*|(|x/p<rsup|2>|)>+<around*|(|4-2\<cdot\>3-3\<cdot\>2|)>*T<around*|(|x/p<rsup|3>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|5-2\<cdot\>4-3\<cdot\>3-4\<cdot\>2|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>k><around*|[|<around*|(|<around*|(|k+1|)>-<big|sum><rsub|2\<leq\>j\<leq\>k>j*<around*|(|k-j+2|)>|)>*T<around*|(|<frac|x|p<rsup|k>>|)>|]>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<cwith|1|1|1|-1|cell-background|pastel
cyan>|<cwith|3|3|1|-1|cell-background|pastel
cyan>|<table|<row|<cell|<big|sum><rsub|n\<leq\>x/p>\<tau\><around*|(|p*n|)>>|<cell|=>|<cell|2*<big|sum><rsub|n\<leq\>x/p>\<tau\><around*|(|n|)>-<big|sum><rsub|n\<leq\>x/p<rsup|2>>\<tau\><around*|(|n|)><space|1em><around*|(|verified|)>>>|<row|<cell|>|<cell|=>|<cell|P<around*|(|x;p|)>>>|<row|<cell|<big|sum><rsub|n\<leq\>x/p>\<tau\><around*|(|p*<rsup|2>n|)>>|<cell|=>|<cell|3<big|sum><rsub|n\<leq\>x/p<rsup|2>>\<tau\><around*|(|n|)>-2*<big|sum><rsub|n\<leq\>x/p<rsup|3>>\<tau\><around*|(|n|)><space|1em><around*|(|verified|)>>>|<row|<cell|<big|sum><rsub|n\<leq\>x/p*q>\<tau\><around*|(|p*q*n|)>>|<cell|=>|<cell|2*<around*|(|<big|sum><rsub|n\<leq\>x/p>\<tau\><around*|(|n|)>+<big|sum><rsub|n\<leq\>x/q>\<tau\><around*|(|n|)>-<big|sum><rsub|n\<leq\>x/p*q>\<tau\><around*|(|n|)>|)>>>|<row|<cell|>|<cell|->|<cell|<around*|(|<big|sum><rsub|n\<leq\>x/p<rsup|2>>\<tau\><around*|(|n|)>+<big|sum><rsub|n\<leq\>x/q<rsup|2>>\<tau\><around*|(|n|)>-<big|sum><rsub|n\<leq\>x/<around*|(|p*q|)><rsup|2>>\<tau\><around*|(|n|)>|)>>>|<row|<cell|>|<cell|=>|<cell|P<around*|(|x;p|)>+P<around*|(|x;q|)>-P<around*|(|x;p*q|)>>>|<row|<cell|<big|sum><rsub|n\<leq\>x/p*q>\<tau\><around*|(|p*q*n|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x,p*q<around*|\||n|\<nobracket\>>>\<tau\><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x,p*q<around*|\||n|\<nobracket\>>><big|sum><rsub|a*b=n>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\>x,p*q<around*|\||a*b|\<nobracket\>>>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\>x,p*q<around*|\||a|\<nobracket\>>>1+<big|sum><rsub|a*b\<leq\>x,p*q*<around*|\||b|\<nobracket\>>>1+<big|sum><rsub|a*b\<leq\>x,p*<around*|\||a,q|\|>b>1+<big|sum><rsub|a*b\<leq\>x,p*<around*|\||b,q|\|>a>1>>|<row|<cell|>|<cell|=>|<cell|P<around*|(|x;p*q|)>+2*<big|sum><rsub|a*b\<leq\>x,p*<around*|\||a,q|\|>b>1>>|<row|<cell|>|<cell|=>|<cell|P<around*|(|x;p*q|)>+2*<big|sum><rsub|a*b*p*q\<leq\>x>1>>|<row|<cell|>|<cell|=>|<cell|P<around*|(|x;p*q|)>+2*<big|sum><rsub|a*b*\<leq\>x/<around*|(|p*q|)>>1>>|<row|<cell|>|<cell|=>|<cell|P<around*|(|x;p*q|)>+2*T<around*|(|x/p*q|)>>>|<row|<cell|<big|sum><rsub|n\<leq\>x/p*q>\<tau\><around*|(|p*q*n|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x/p*q><big|sum><rsub|a*b=n><big|sum><rsub|p<around*|\||n|\<nobracket\>>><big|sum><rsub|q<around*|\||n/p|\<nobracket\>>>1>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\><sqrt|x>>d<around*|(|n<rsup|2>|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\><sqrt|x>><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|d>|)>*\<tau\><rsup|2><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\><sqrt|x>>\<mu\><around*|(|a|)>*\<tau\><rsup|2><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\><sqrt|x>>\<mu\><around*|(|a|)>*<big|sum><rsub|b\<leq\><sqrt|x>/a>\<tau\><rsup|2><around*|(|b|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>2<rsup|\<omega\><around*|(|n|)>>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<rsup|><around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|d>|)>*\<tau\><around*|(|d<rsup|2>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\>x>\<mu\><around*|(|a|)>*\<tau\><around*|(|b<rsup|2>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\>x>\<mu\><around*|(|a|)>*<big|sum><rsub|b\<leq\>x/a>\<tau\><around*|(|b<rsup|2>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><around*|(|d<rsup|2>|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|2*a+1>|<cell|if n=p<rsup|a>>>>>>>>|<row|<cell|>|<cell|=>|<cell|<big|prod><rsub|i=1><rsup|\<omega\><around*|(|n|)>><around*|(|2*a<rsub|i>+1|)>>>|<row|<cell|f<rsub|p><around*|(|x|)>>|<cell|=>|<cell|1+3*x+5*x<rsup|2>+7*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|i=0><rsup|\<infty\>><around*|(|2*i+1|)>*x<rsup|i>>>|<row|<cell|>|<cell|=>|<cell|1+3*x+5*x<rsup|2>+7*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|->|<cell|<around*|(|1+x+x<rsup|2>+x<rsup|3>+\<ldots\>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|1+x+x<rsup|2>+x<rsup|3>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|2*x+4*x<rsup|2>+6*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|<frac|1|1-x>>>|<row|<cell|>|<cell|=>|<cell|2*<around*|(|x+2*x<rsup|2>+3*x<rsup|3>+\<ldots\>|)>+<frac|1|1-x>>>|<row|<cell|>|<cell|=>|<cell|2*<frac|x|<around*|(|1-x|)><rsup|2>>+<frac|1|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|2*x+<around*|(|1-x|)>|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+x|<around*|(|1-x<rsup|>|)><rsup|2>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><around*|(|n<rsup|2>|)>>|<cell|=>|<cell|<big|sum><rsub|a<around*|\||n|\<nobracket\>>>\<tau\><around*|(|<frac|n|a>|)><big|sum><rsub|b<rsup|2><around*|\||a|\<nobracket\>>>\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d*b<rsup|2>*c=n>\<tau\><around*|(|c|)>*\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b<rsup|2>*=n>\<mu\><around*|(|b|)>*<big|sum><rsub|d<around*|\|||\<nobracket\>>a><rsub|>\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a*b<rsup|2>*=n>\<mu\><around*|(|b|)>*\<tau\><rsub|3><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|b|)>*\<tau\><rsub|3><around*|(|<frac|n|b<rsup|2>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>\<tau\><around*|(|n<rsup|2>|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a<around*|\||n|\<nobracket\>>>\<tau\><around*|(|<frac|n|a>|)><big|sum><rsub|b<rsup|2><around*|\||a|\<nobracket\>>>\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|a*c=n>\<tau\><around*|(|c|)>*<big|sum><rsub|b<rsup|2><around*|\||a|\<nobracket\>>>*\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d*b<rsup|2>*c=n>\<tau\><around*|(|c|)>*\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d*b<rsup|2>*c\<leq\>x>\<tau\><around*|(|c|)>*\<mu\><around*|(|b|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b\<leq\><sqrt|x>>\<mu\><around*|(|b|)>*<big|sum><rsub|d*c\<leq\>x/b<rsup|2>>\<tau\><around*|(|c|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b\<leq\><sqrt|x>>\<mu\><around*|(|b|)>*<big|sum><rsub|n\<leq\>x/b<rsup|2>><big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<tau\><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b\<leq\><sqrt|x>>\<mu\><around*|(|b|)>*<big|sum><rsub|n\<leq\>x/b<rsup|2>>\<tau\><rsub|3><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|a\<leq\><sqrt|x>>\<mu\><around*|(|a|)>*T<rsub|3><around*|(|<frac|x|*a<rsup|2>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<cwith|1|-1|1|-1|cell-background|pastel
cyan>|<table|<row|<cell|\<tau\><around*|(|n<rsup|2>|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<mu\><around*|(|<frac|n|d>|)>*\<tau\><rsup|2><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>\<tau\><around*|(|<frac|n|d>|)>*\<mu\><rsup|2><around*|(|d|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|3><around*|(|<frac|n|d<rsup|2>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x>\<tau\><around*|(|n<rsup|2>|)>*\<mu\><rsup|2><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><around*|[|<around*|(|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|3><around*|(|<frac|n|d<rsup|2>>|)>|)><around*|(|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>|)>|]>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|e<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|e|)><big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|3><around*|(|<frac|n|d<rsup|2>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|e\<leq\><sqrt|x>>\<mu\><around*|(|e|)><big|sum><rsub|d\<leq\><sqrt|x>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><rsup|2><around*|(|n|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|<around*|(|a+1|)><rsup|2>>|<cell|if
n=p<rsup|a>>>>>>>>|<row|<cell|>|<cell|=>|<cell|<big|prod><rsub|i=1><rsup|\<omega\><around*|(|n|)>><around*|(|a+1|)><rsup|2>>>|<row|<cell|f<rsub|p><around*|(|x|)>>|<cell|=>|<cell|1+4*x+9*x<rsup|2>+16*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+*x+4x<rsup|2>+9*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|x+3*x<rsup|2>+5*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|2*x+2*x<rsup|2>+2*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+x*<around*|(|1+4*x+9*x<rsup|2>+\<ldots\>|)>+x*<frac|1+x|<around*|(|1-x|)><rsup|2>>+2<frac|x|1-x>>>|<row|<cell|>|<cell|=>|<cell|1*+x*f<rsub|p><around*|(|n|)>+<frac|x+x<rsup|2>+2*x*<around*|(|1-x|)>|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-2*x+x<rsup|2>+x+x<rsup|2>+2*x-2*x<rsup|2>|<around*|(|1-x|)><rsup|3>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+x|<around*|(|1-x|)><rsup|3>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>f<around*|(|d|)>*g<around*|(|<frac|n|d<rsup|2>>|)>>|<cell|>|<cell|>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<delta\><around*|(|n|)>>|<cell|=>|<cell|<around*|(|3<rsup|\<Omega\><around*|(|n|)>>\<star\>\<mu\><around*|(|n|)>*3<rsup|\<omega\><around*|(|n|)>>|)><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||n|\<nobracket\>>>3<rsup|\<Omega\><around*|(|n/d|)>>*\<mu\><around*|(|d|)>*3<rsup|\<omega\><around*|(|d|)>>>>|<row|<cell|>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|3<rsup|a>*1-3<rsup|a-1>*3=0>|<cell|if
n=p<rsup|a>>>>>>>>|<row|<cell|0>|<cell|=>|<cell|<big|sum><rsub|a*b\<leq\>x>3<rsup|\<Omega\><around*|(|a|)>>*\<mu\><around*|(|b|)>*3<rsup|\<omega\><around*|(|b|)>><space|1em>for
all x\<gtr\>1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|b*\<leq\>x>\<mu\><around*|(|b|)>*3<rsup|\<omega\><around*|(|b|)>>*<big|sum><rsub|a\<leq\>x/b>3<rsup|\<Omega\><around*|(|a|)>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|><around*|(|n|)>>|<cell|=>|<cell|<big|prod><rsup|\<omega\><around*|(|n|)>><rsub|k=1>a<rsub|k>>>|<row|<cell|f<rsub|p><around*|(|x|)>>|<cell|=>|<cell|1+x+2*x<rsup|2>+3*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+x*<around*|(|1+2*x+3*x<rsup|2>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|1+x*<frac|1|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-2*x+x<rsup|2>+x|<around*|(|1-x|)><rsup|2>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-x+x<rsup|2>|<around*|(|1-x|)><rsup|2>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<mu\><around*|(|n|)>*2<rsup|2*\<omega\><around*|(|n|)>>>|<cell|=>|<cell|\<mu\><around*|(|n|)>*<around*|(|<big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|><around*|(|<frac|n|d<rsup|2>>|)>|)><rsup|2>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|S<rsub|><around*|(|x;c|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x/c>\<tau\><around*|(|c*n|)>>>|<row|<cell|P<rsub|><around*|(|x;p|)>>|<cell|=>|<cell|S<rsub|><around*|(|x;p|)>=2*T<around*|(|<frac|x|p>|)>-T<around*|(|<frac|x|p<rsup|2>>|)>>>|<row|<cell|>|<cell|>|<cell|>>|<row|<cell|<big|sum><rsub|n\<leq\>x/6>\<tau\><around*|(|6*n|)>>|<cell|=>|<cell|S<around*|(|x;6|)>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|6\<cdot\>1|)>+\<tau\><around*|(|6\<cdot\>2|)>+\<tau\>*<around*|(|6\<cdot\>3|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|\<tau\><around*|(|6|)>*<around*|(|\<tau\><around*|(|1|)>+\<tau\><around*|(|2|)>+\<tau\><around*|(|3|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|->|<cell|\<tau\><around*|(|6|)>*<around*|(|\<tau\><around*|(|2|)>+\<tau\><around*|(|4|)>+\<tau\><around*|(|6|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|->|<cell|\<tau\><around*|(|6|)>*<around*|(|\<tau\><around*|(|3|)>+\<tau\><around*|(|6|)>+\<tau\><around*|(|9|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|+>|<cell|\<tau\><around*|(|6|)>*<around*|(|\<tau\><around*|(|6|)>+\<tau\><around*|(|12|)>+\<tau\><around*|(|18|)>+\<ldots\>|)>>>|<row|<cell|>|<cell|+>|<cell|\<tau\><around*|(|6\<cdot\>2*\<cdot\>1|)>+\<tau\><around*|(|6\<cdot\>2*\<cdot\>2|)>+\<tau\><around*|(|6\<cdot\>2*\<cdot\>3|)>+\<ldots\>>>|<row|<cell|>|<cell|+>|<cell|\<tau\><around*|(|6\<cdot\>3*\<cdot\>1|)>+\<tau\><around*|(|6\<cdot\>3*\<cdot\>2|)>+\<tau\><around*|(|6\<cdot\>3*\<cdot\>3|)>+\<ldots\>>>|<row|<cell|>|<cell|->|<cell|\<tau\><around*|(|6\<cdot\>6*\<cdot\>1|)>+\<tau\><around*|(|6\<cdot\>6*\<cdot\>2|)>+\<tau\><around*|(|6\<cdot\>6*\<cdot\>3|)>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|4*<around*|(|T<around*|(|<frac|x|6>|)>-P<rsub|><around*|(|<frac|x|6>;2|)>-P<rsub|><around*|(|<frac|x|6>;3|)>+S<rsub|><around*|(|<frac|x|6>;6|)>|)>>>|<row|<cell|>|<cell|+>|<cell|S<rsub|><around*|(|x;6\<cdot\>2|)>+S<rsub|><around*|(|x;6\<cdot\>3|)>-S<rsub|><around*|(|x;6\<cdot\>6|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|S<rsub|><around*|(|x;p,a,q,b|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x/c>\<tau\><around*|(|p<rsup|a>*q<rsup|b>*n|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*<around*|(|b+1|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>|)>-P<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>;p|)>-P<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>;q|)>+S<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>;p,1,q,1|)>|)>*>>|<row|<cell|>|<cell|+>|<cell|S<around*|(|x;p,a+1,q,b|)>+S<around*|(|x;p,a,q,b+1|)>-S<around*|(|x;p,a+1,q,b+1|)><space|1em><around*|(|verified|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*<around*|(|b+1|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>|)>-2*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b>>|)>+T<around*|(|<frac|x|p<rsup|a+2>*q<rsup|b>>|)>-2*T<around*|(|<frac|x|p<rsup|a>*q<rsup|b+1>>|)>+T<around*|(|<frac|x|p<rsup|a>*q<rsup|b+2>>|)>+S<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>;p,1,q,1|)>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|a+2|)>*<around*|(|b+1|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b>>|)>-2*T<around*|(|<frac|x|p<rsup|a+2>*q<rsup|b>>|)>+T<around*|(|<frac|x|p<rsup|a+3>*q<rsup|b>>|)>-2*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+1>>|)>+T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+2>>|)>+S<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b>>;p,1,q,1|)>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|a+1|)>*<around*|(|b+2|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a>*q<rsup|b+1>>|)>-2*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+1>>|)>+T<around*|(|<frac|x|p<rsup|a+2>*q<rsup|b+1>>|)>-2*T<around*|(|<frac|x|p<rsup|a>*q<rsup|b+2>>|)>+T<around*|(|<frac|x|p<rsup|a>*q<rsup|b+3>>|)>+S<around*|(|<frac|x|p<rsup|a>*q<rsup|b+1>>;p,1,q,1|)>|)>>>|<row|<cell|>|<cell|->|<cell|<around*|(|a+2|)>*<around*|(|b+2|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+1>>|)>-2*T<around*|(|<frac|x|p<rsup|a+2>*q<rsup|b+1>>|)>+T<around*|(|<frac|x|p<rsup|a+3>*q<rsup|b+1>>|)>-2*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+2>>|)>+T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+3>>|)>+S<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+1>>;p,1,q,1|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*<around*|(|b+1|)>*T<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|-2*<around*|(|a+1|)>*<around*|(|b+1|)>+<around*|(|a+2|)>*<around*|(|b+1|)>|)>*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b>>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|<around*|(|a+2|)>*<around*|(|b+1|)>-2*<around*|(|a+2|)>*<around*|(|b+1|)>|)>*T<around*|(|<frac|x|p<rsup|a+2>*q<rsup|b>>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|<around*|(|a+2|)>*<around*|(|b+1|)>|)>*T<around*|(|<frac|x|p<rsup|a+3>*q<rsup|b>>|)>>>|<row|<cell|>|<cell|+>|<cell|\<ldots\>>>>>
</eqnarray*>
All terms containing exponents with <math|2> or more added cancel and so
<\eqnarray*>
<tformat|<table|<row|<cell|S<rsub|><around*|(|x;p,a,q,b|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x/<around*|(|p<rsup|a>*q<rsup|b>|)>>\<tau\><around*|(|p<rsup|a>*q<rsup|b>*n|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*<around*|(|b+1|)>*T<around*|(|<frac|x|p<rsup|a>*q<rsup|b>>|)>>>|<row|<cell|>|<cell|->|<cell|a*<around*|(|b+1|)>*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b>>|)>>>|<row|<cell|>|<cell|->|<cell|<around*|(|a+1|)>*b*T<around*|(|<frac|x|p<rsup|a>*q<rsup|b+1>>|)>>>|<row|<cell|>|<cell|+>|<cell|a*b*T<around*|(|<frac|x|p<rsup|a+1>*q<rsup|b+1>>|)><with|font-series|bold|><space|1em><around*|(|verified|)>>>>>
</eqnarray*>
Generalizing
<\eqnarray*>
<tformat|<cwith|1|1|1|-1|cell-background|pastel
cyan>|<table|<row|<cell|<big|sum><rsub|n\<leq\>x/c<rsup|k>>\<tau\><around*|(|c<rsup|k>*n|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||c|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|c<rsup|k>|d>|)>T<around*|(|<frac|x|c<rsup|k>*d>|)>>>>>
</eqnarray*>
For squarefree factors
<\eqnarray*>
<tformat|<table|<row|<cell|S<around*|(|x;p,1,q,1|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x/<around*|(|p<rsup|>*q<rsup|>|)>>\<tau\><around*|(|p<rsup|>*q<rsup|>*n|)>>>|<row|<cell|>|<cell|=>|<cell|4*T<around*|(|<frac|x|p*q>|)>-2*T<around*|(|<frac|x|p<rsup|2>*q>|)>-2*T<around*|(|<frac|x|p*q<rsup|2>>|)>+T<around*|(|<frac|x|p<rsup|2>*q<rsup|2>>|)><rsub|>>>>>
</eqnarray*>
Generalizing
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x/c>\<tau\><around*|(|c*n|)>>|<cell|=>|<cell|<big|sum><rsub|d<around*|\||c|\<nobracket\>>>\<mu\><around*|(|d|)>*2<rsup|\<omega\><around*|(|c|)>-\<omega\><around*|(|d|)>>*T<around*|(|<frac|x|c*d>|)><space|1em><around*|(|c
squarefree|)>>>>>
</eqnarray*>
for example
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x/6>\<tau\><around*|(|6*n|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x,6<around*|\||n|\<nobracket\>>>\<tau\><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|4*T<around*|(|<frac|n|6>|)>-2*T<around*|(|<frac|n|12>|)>-2*T<around*|(|<frac|n|18>|)>+T<around*|(|<frac|n|36>|)>>>>>
</eqnarray*>
Because all terms other than the first are multiples of <math|a> or
<math|b> and all but the last are multiples of <math|a+1> or <math|b+1>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x/c<rsup|k>>\<tau\><around*|(|c<rsup|k>*n|)>>|<cell|\<equiv\>>|<cell|\<tau\><around*|(|c<rsup|k>|)>*T<around*|(|<frac|x|c<rsup|k>>|)><space|1em><around*|(|mod
k|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|<around*|(|-1|)><rsup|\<omega\><around*|(|c|)>>*\<tau\><around*|(|c<rsup|k-1>|)>*T<around*|(|<frac|x|c<rsup|k+1>>|)><space|1em><around*|(|mod
k+1|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|\<tau\><around*|(|c<rsup|k>|)>*T<around*|(|<frac|x|c<rsup|k>>|)>-<big|sum><rsub|p<around*|\||c|\<nobracket\>>>\<tau\><around*|(|<frac|c<rsup|k>|p>|)>*T<around*|(|<frac|x|c<rsup|k>*p>|)><space|1em><around*|(|mod
k<rsup|2>|)>>>>>
</eqnarray*>
but
<\eqnarray*>
<tformat|<table|<row|<cell|T<around*|(|x|)>>|<cell|\<equiv\>>|<cell|<around*|\<lfloor\>|<sqrt|x>|\<rfloor\>><space|1em><around*|(|mod
2|)>>>>>
</eqnarray*>
and
<\eqnarray*>
<tformat|<table|<row|<cell|\<tau\><around*|(|<frac|c<rsup|2>|p>|)>>|<cell|\<equiv\>>|<cell|0<space|1em><around*|(|mod
2|)>,for p prime,p<around*|\||c|\<nobracket\>>>>>>
</eqnarray*>
so
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x/c<rsup|2>>\<tau\><around*|(|c<rsup|2>*n|)>>|<cell|\<equiv\>>|<cell|\<tau\><around*|(|c<rsup|2>|)>*T<around*|(|<frac|x|c<rsup|2>>|)>-<big|sum><rsub|p<around*|\||c|\<nobracket\>>>\<tau\><around*|(|<frac|c<rsup|2>|p>|)>*<around*|\<lfloor\>|<sqrt|<frac|x|c<rsup|k>*p>>|\<rfloor\>><space|1em><around*|(|mod
4|)>>>>>
</eqnarray*>
which is computable in <math|O<around*|(|<around*|(|<frac|x|c<rsup|2>>|)><rsup|1/3>+log
x|)>=O<around*|(|<around*|(|<frac|x|c<rsup|2>>|)><rsup|1/3>|)>> time.
<\eqnarray*>
<tformat|<table|<row|<cell|S<around*|(|x;p,a|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x/c>\<tau\><around*|(|p<rsup|a>*n|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a>>|)>-P<around*|(|<frac|x|p<rsup|a>>;p|)>|)>>>|<row|<cell|>|<cell|+>|<cell|S<around*|(|x;p,a+1|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*<around*|(|T<around*|(|<frac|x|p<rsup|a>>|)>-2*T<around*|(|<frac|x|p<rsup|a+1>>|)>+T<around*|(|<frac|x|p<rsup|a+2>>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|a+1|)>*T<around*|(|<frac|x|p<rsup|a>>|)>-a*T<around*|(|<frac|x|p<rsup|a+1>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<around*|(|n|)>=<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|n|d<rsup|3>>|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|2>|<cell|if n=p>>|<row|<cell|3>|<cell|if
n=p<rsup|2>>>|<row|<cell|4-1=3>|<cell|if
n=p<rsup|3>>>|<row|<cell|5-2=3>|<cell|if
n=p<rsup|4>>>>>>>>|<row|<cell|f<rsub|p><around*|(|x|)>>|<cell|=>|<cell|1+2*x+3*x<rsup|2>+3*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+2*x+3*x<rsup|2>*<around*|(|1+x<rsup|2>+x<rsup|3>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|<frac|<around*|(|1-x|)>*<around*|(|1+2*x|)>+3*x<rsup|2>|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+2*x-x-2*x<rsup|2>+3*x<rsup|2>|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+x+x<rsup|2>|1-x>>>|<row|<cell|>|<cell|>|<cell|>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|p><around*|(|x|)>>|<cell|=>|<cell|1+3*x+3\<cdot\>4*x<rsup|2>+3\<cdot\>9*x<rsup|3>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+3*x*<around*|(|1+4*x+9*x<rsup|2>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|1+3*x*<frac|1+x|<around*|(|1-x|)><rsup|3>>>>|<row|<cell|>|<cell|=>|<cell|<frac|<around*|(|1-x|)>*<around*|(|1-2*x+x<rsup|2>|)>+3*x+3*x<rsup|2>|<around*|(|1-x|)><rsup|3>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1-2*x+x<rsup|2>-x+2*x<rsup|2>-x<rsup|3>+3*x+3*x<rsup|2>|<around*|(|1-x|)><rsup|3>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+6*x-x<rsup|3>|<around*|(|1-x|)><rsup|3>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<rsub|p><around*|(|x|)>>|<cell|=>|<cell|1+3*x+9*x<rsup|2>*+9x<rsup|3>+9*x<rsup|4>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1+3*x+9*x<rsup|2>*<around*|(|1+x+x<rsup|2>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|<frac|<around*|(|1-x|)>+3*x*<around*|(|1-x|)>+9*x<rsup|2>|1-x>>>|<row|<cell|>|<cell|=>|<cell|<frac|1+2*x+12*x<rsup|2>|1-x>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|f<around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|d<rsup|3><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><rsub|><around*|(|<around*|(|<frac|n|d<rsup|3>>|)><rsup|2>|)>>>|<row|<cell|f<rsub|p><around*|(|n|)>>|<cell|=>|<cell|<choice|<tformat|<table|<row|<cell|1>|<cell|if
n=1>>|<row|<cell|3>|<cell|if n=p >>|<row|<cell|5>|<cell|if
n=p<rsup|2>>>|<row|<cell|7-1=6>|<cell|if
n=p<rsup|3>>>|<row|<cell|9-3=6>|<cell|if n=p<rsup|4>>>>>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|\<zeta\><around*|(|s|)>>|<cell|=>|<cell|<big|sum><rsub|n=1><rsup|\<infty\>><frac|1|n<rsup|s>>>>|<row|<cell|\<zeta\><around*|(|2*s|)>>|<cell|=>|<cell|<big|sum><rsub|n=1><rsup|\<infty\>><frac|1|n<rsup|2*s>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<frac|1|\<zeta\><around*|(|s|)>>>|<cell|=>|<cell|<big|prod><rsub|p><around*|(|1-<frac|1|p<rsup|s>>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|1-<frac|1|2<rsup|s>>|)>*<around*|(|1-<frac|1|3<rsup|s>>|)>*<around*|(|1-<frac|1|5<rsup|s>>|)>*\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|1-<frac|1|2<rsup|s>>-<frac|1|3<rsup|s>>+<frac|1|<around*|(|2\<cdot\>3|)><rsup|s>>|)>*<around*|(|1-<frac|1|5<rsup|s>>|)>*\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|1-<frac|1|2<rsup|s>>-<frac|1|3<rsup|s>>+<frac|1|<around*|(|2\<cdot\>3|)><rsup|s>>-<frac|1|5<rsup|s>>+<frac|1|<around*|(|2\<cdot\>5|)><rsup|s>>+<frac|1|<around*|(|3\<cdot\>5|)><rsup|s>>-<frac|1|<around*|(|2\<cdot\>3\<cdot\>5|)><rsup|s>>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n=1><rsup|\<infty\>><frac|\<mu\><around*|(|n|)>|n<rsup|s>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n=1><rsup|\<infty\>><frac|<around*|(|-1|)><rsup|n-1>|n<rsup|2>>>|<cell|=>|<cell|<frac|1|1<rsup|2>>-<frac|1|2<rsup|2>>+<frac|1|3<rsup|3>>-<frac|1|4<rsup|2>>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|<frac|1|1<rsup|2>>+<frac|1|2<rsup|2>>+<frac|1|3<rsup|2>>+<frac|1|4<rsup|2>>+\<ldots\>>>|<row|<cell|>|<cell|->|<cell|2*<around*|(|<frac|1|2<rsup|2>>+<frac|1|4<rsup|2>>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|\<zeta\><around*|(|2|)>-2*<around*|(|<frac|1|1<rsup|2>*2<rsup|2>>+<frac|1|2<rsup|2>*2<rsup|2>>+<frac|1|3<rsup|2>*2<rsup|2>>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|\<zeta\>*<around*|(|*2|)>-<frac|1|2>*<around*|(|<frac|1|1<rsup|2>>+<frac|1|2<rsup|2>>+<frac|1|3<rsup|2>>+\<ldots\>|)>>>|<row|<cell|>|<cell|=>|<cell|\<zeta\><around*|(|2|)>-<frac|1|2>*\<zeta\><around*|(|2|)>>>|<row|<cell|>|<cell|=>|<cell|<frac|1|2>*\<zeta\><around*|(|2|)>*>>>>
</eqnarray*>
Proof of Linnik's Mobius identity.
<\eqnarray*>
<tformat|<table|<row|<cell|t<rsub|j><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsub|k=0><rsup|j><around*|(|-1|)><rsup|j-k>*<binom|j|k>*\<tau\><rsub|k><around*|(|n|)>>>|<row|<cell|\<zeta\><around*|(|s|)><rsup|j>>|<cell|=>|<cell|<big|sum><rsup|\<infty\>><rsub|n=1><frac|\<tau\><rsub|j><rsup|><around*|(|n|)>|n<rsup|s>>>>|<row|<cell|<around*|(|\<zeta\><around*|(|s|)>-1|)><rsup|j>>|<cell|=>|<cell|<big|sum><rsub|k=0><rsup|j><around*|(|-1|)><rsup|j-k>*<binom|j|k>*\<zeta\><around*|(|s|)><rsup|k>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|k=0><rsup|j><around*|(|-1|)><rsup|j-k>*<binom|j|k>*<big|sum><rsup|\<infty\>><rsub|n=1><frac|\<tau\><rsub|k><around*|(|n|)>|n<rsup|s>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|\<infty\>><rsub|n=1><frac|t<rsub|j><around*|(|n|)>|n<rsup|s>>>>|<row|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*<big|sum><rsup|\<infty\>><rsub|n=1><frac|t<rsub|j><around*|(|n|)>|n<rsup|s>>>|<cell|=>|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*<around*|(|\<zeta\><around*|(|s|)>-1|)><rsup|j>>>|<row|<cell|<big|sum><rsup|\<infty\>><rsub|n=1><frac|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*t<rsub|j><around*|(|n|)>|n<rsup|s>>>|<cell|=>|<cell|<frac|1|1+<around*|(|\<zeta\><around*|(|s|)>-1|)>>>>|<row|<cell|>|<cell|=>|<cell|<frac|1|\<zeta\><around*|(|s|)>>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|n=1><rsup|\<infty\>><frac|\<mu\><around*|(|n|)>|n<rsup|s>>>>|<row|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*t<rsub|j><around*|(|n|)>>|<cell|=>|<cell|\<mu\><around*|(|n|)>,n\<geq\>1>>>>
</eqnarray*>
Mess around with that identity.
<\eqnarray*>
<tformat|<table|<row|<cell|t<rsub|0><around*|(|n|)>>|<cell|=>|<cell|\<tau\><rsub|0><around*|(|n|)>>>|<row|<cell|t<rsub|1><around*|(|n|)>>|<cell|=>|<cell|\<tau\><rsub|1><around*|(|n|)>-\<tau\><rsub|0><around*|(|n|)>>>|<row|<cell|t<rsub|2><around*|(|n|)>>|<cell|=>|<cell|\<tau\><rsub|2><around*|(|n|)>-2*\<tau\><rsub|1><around*|(|n|)>+\<tau\><rsub|0><around*|(|n|)>>>|<row|<cell|t<rsub|3><around*|(|n|)>>|<cell|=>|<cell|\<tau\><rsub|3><around*|(|n|)>-3*\<tau\><rsub|2><around*|(|n|)>+3*\<tau\><rsub|1><around*|(|n|)>-\<tau\><rsub|0><around*|(|n|)>>>|<row|<cell|t<rsub|0><around*|(|n|)>-t<rsub|1><around*|(|n|)>+t<rsub|2><around*|(|n|)>-t<rsub|3><around*|(|n|)>>|<cell|=>|<cell|4*\<tau\><rsub|0><around*|(|n|)>-6*\<tau\><rsub|1><around*|(|n|)>+4*\<tau\><rsub|2><around*|(|n|)>-\<tau\><rsub|3><around*|(|n|)>>>|<row|<cell|<big|sum><rsub|j=0><rsup|k><around*|(|-1|)><rsup|j>*t<rsub|j><around*|(|n|)>>|<cell|=>|<cell|<big|sum><rsup|k><rsub|j=0>*<around*|(|-1|)><rsup|j>*\<tau\><rsub|j><around*|(|n|)>*<big|sum><rsup|k-j><rsub|i=0><binom|k-i|j>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsup|k><rsub|j=0>*<around*|(|-1|)><rsup|j>*<binom|k+1|j+1>*\<tau\><rsub|j><around*|(|n|)>>>|<row|<cell|t<rsub|0><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|0>>|<row|<cell|t<rsub|1><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|<binom|a|0>-<binom|a-1|-1>>>|<row|<cell|>|<cell|=>|<cell|1-0>>|<row|<cell|>|<cell|=>|<cell|1>>|<row|<cell|t<rsub|2><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|<binom|a+1|1>-2*<binom|a|0>-<binom|a-1|-1>>>|<row|<cell|>|<cell|=>|<cell|a-1>>|<row|<cell|t<rsub|3><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|<binom|a+2|2>-3*<binom|a+1|1>+3*<binom|a|0>-<binom|a-1|-1>>>|<row|<cell|>|<cell|=>|<cell|<frac|<around*|(|a+1|)>*<around*|(|a+2|)>|2>-3*<around*|(|a+1|)>+3-0>>|<row|<cell|>|<cell|=>|<cell|<frac|<around*|(|a-1|)>*<around*|(|a-2|)>|2>>>|<row|<cell|t<rsub|4><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|<frac|<around*|(|a-1|)>*<around*|(|a-2|)>*<around*|(|a-3|)>|6>>>|<row|<cell|t<rsub|k><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|<binom|a-1|k-1>>>|<row|<cell|\<tau\><rsub|k><around*|(|p<rsup|a>|)>>|<cell|=>|<cell|<binom|a+k-1|k-1>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*T<rprime|'><rsub|j><around*|(|n|)>>|<cell|=>|<cell|M<around*|(|n|)>>>|<row|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*<big|sum><rsub|d\<leq\>n>T<rprime|'><rsub|j><around*|(|<frac|n|d>|)>>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>n>M<around*|(|<frac|n|d>|)>>>|<row|<cell|>|<cell|=>|<cell|1>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*T<rprime|'><rsub|j><around*|(|n|)>+<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*<big|sum><rsub|2\<leq\>d\<leq\>n>T<rprime|'><rsub|j><around*|(|<frac|n|d>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*T<rprime|'><rsub|j><around*|(|n|)>+<big|sum><rsub|j=0><rsup|\<infty\>><around*|(|-1|)><rsup|j>*T<rprime|'><rsub|j+1><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|T<rprime|'><rsub|0><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|1>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|T<around*|(|x|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x>\<tau\><around*|(|n|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsup|<around*|(|<wide|2|\<bar\>>|)>><around*|(|x|)>+T<rsup|<around*|(|2|)>><around*|(|x|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsup|<around*|(|<wide|3|\<bar\>>|)>><around*|(|x|)>+T<rsup|<around*|(|3|)>><around*|(|x|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsup|<around*|(|<wide|3!|\<bar\>>|)>><around*|(|x|)>+T<rsup|<around*|(|2|)>><around*|(|x|)>+T<rsup|<around*|(|3|)>><around*|(|x|)>-T<rsup|<around*|(|6|)>><around*|(|x|)>>>|<row|<cell|>|<cell|=>|<cell|T<rsup|<around*|(|<wide|3!|\<bar\>>|)>><around*|(|x|)>+2*T<around*|(|<frac|n|2>|)>-T<around*|(|<frac|n|4>|)>+2*T<around*|(|<frac|n|3>|)>-T<around*|(|<frac|n|9>|)>>>|<row|<cell|>|<cell|+>|<cell|4*T<around*|(|<frac|n|6>|)>-2*T<around*|(|<frac|n|12>|)>-2*T<around*|(|<frac|n|18>|)>+T<around*|(|<frac|n|36>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|n|d<rsup|2>>|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x><big|sum><rsub|d<rsup|2>a=n>\<mu\><around*|(|d|)>\<tau\><around*|(|a|)>*>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d<rsup|2>*a\<leq\>x>\<mu\><around*|(|d|)>*\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>>\<mu\><around*|(|d|)>*<big|sum><rsub|a\<leq\>x/d<rsup|2>>\<tau\><around*|(|a|)>>>|<row|<cell|<big|sum><rsub|n\<leq\>x,n
even><big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|n|d<rsup|2>>|)>>|<cell|=>|<cell|<big|sum><rsub|n\<leq\>x,n
even><big|sum><rsub|d<rsup|2>a=n>\<mu\><around*|(|d|)>\<tau\><around*|(|a|)>*>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>,d
even>\<mu\><around*|(|d|)>*<big|sum><rsub|a\<leq\>x/d<rsup|2>>\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>,d
odd>\<mu\><around*|(|d|)>*<big|sum><rsub|a\<leq\>x/d<rsup|2>,a
even>\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>>\<mu\><around*|(|d|)>*<big|sum><rsub|a\<leq\>x/d<rsup|2>,a
even>\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>,d
even>\<mu\><around*|(|d|)>*<big|sum><rsub|a\<leq\>x/d<rsup|2>,a
odd>\<tau\><around*|(|a|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>>\<mu\><around*|(|d|)>*<around*|(|2*T<around*|(|<frac|x|2*d<rsup|2>>|)>-T<around*|(|<frac|x|4*d<rsup|2>>|)>|)>>>|<row|<cell|>|<cell|->|<cell|<big|sum><rsub|d\<leq\><sqrt|x>,d
mod 4=2>\<mu\><around*|(|<frac|d-1|2>|)><around*|(|T<around*|(|<frac|x|d<rsup|2>>|)>-2*T<around*|(|<frac|x|2*d<rsup|2>>|)>+T<around*|(|<frac|x|4*d<rsup|2>>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|2<rsup|\<omega\><around*|(|2|)>>+2<rsup|\<omega\><around*|(|4|)>>+2<rsup|\<omega\><around*|(|6|)>>+\<ldots\>>>|<row|<cell|>|<cell|=>|<cell|2*<around*|(|2<rsup|\<omega\><around*|(|2/2|)>>+2<rsup|\<omega\><around*|(|6/2|)>>+2<rsup|\<omega\><around*|(|10/2|)>>+\<ldots\>|)>+<around*|(|2<rsup|\<omega\><around*|(|4|)>>+2<rsup|\<omega\><around*|(|8|)>>+2<rsup|\<omega\><around*|(|12|)>>+\<ldots\>|)>>>|<row|<cell|>|<cell|\<equiv\>>|<cell|2*<around*|\<lfloor\>|log<rsub|2>
x|\<rfloor\>><space|1em><around*|(|mod
4|)>>>|<row|<cell|<big|sum><rsub|n\<leq\>x,n
odd><big|sum><rsub|d<rsup|2><around*|\||n|\<nobracket\>>>\<mu\><around*|(|d|)>*\<tau\><around*|(|<frac|n|d<rsup|2>>|)>>|<cell|=>|<cell|<big|sum><rsub|d\<leq\><sqrt|x>,d
odd>\<mu\><around*|(|d|)>*<big|sum><rsub|a\<leq\>x/d<rsup|2>,a
odd>\<tau\><around*|(|a|)>>>>>
</eqnarray*>
\;
<\eqnarray*>
<tformat|<table|<row|<cell|\<alpha\><around*|(|x|)>>|<cell|=>|<cell|x<rsup|2>>>|<row|<cell|\<alpha\><around*|(|x+1|)>>|<cell|=>|<cell|<around*|(|x+1|)><rsup|2>>>|<row|<cell|\<alpha\><around*|(|x|)>-\<alpha\><around*|(|x+1|)>>|<cell|=>|<cell|x<rsup|2>-<around*|(|x+1|)><rsup|2>=x<rsup|2>-<around*|(|x<rsup|2>+2*x+1|)>=-2*x-1>>|<row|<cell|\<beta\><around*|(|x|)>>|<cell|=>|<cell|<around*|\<lfloor\>|n/x<rsup|2>|\<rfloor\>>>>|<row|<cell|\<delta\><rsub|1><around*|(|x|)>>|<cell|=>|<cell|\<beta\><around*|(|x|)>-\<beta\><around*|(|x+1|)>>>|<row|<cell|\<delta\><rsub|2><around*|(|x|)>>|<cell|=>|<cell|\<delta\><rsub|1><around*|(|x|)>-\<delta\><rsub|1><around*|(|x+1|)>>>|<row|<cell|\<varepsilon\><around*|(|x|)>>|<cell|=>|<cell|n-x<rsup|2>*\<beta\><around*|(|x|)>>>|<row|<cell|\<varepsilon\><around*|(|x+1|)>>|<cell|=>|<cell|n-<around*|(|x+1|)><rsup|2>*\<beta\><around*|(|x+1|)>>>|<row|<cell|\<varepsilon\><around*|(|x|)>-\<varepsilon\><around*|(|x+1|)>>|<cell|=>|<cell|<around*|(|x+1|)><rsup|2>*\<beta\><around*|(|x+1|)>-x<rsup|2>*\<beta\><around*|(|x|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|x+1|)><rsup|2>*\<beta\><around*|(|x+1|)>-x<rsup|2>*<around*|(|\<beta\><around*|(|x+1|)>+\<delta\><rsub|1><around*|(|x+1|)>+\<delta\><rsub|2><around*|(|x|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|x<rsup|2>+2*x+1|)>*\<beta\><around*|(|x+1|)>-x<rsup|2>*<around*|(|\<beta\><around*|(|x+1|)>+\<delta\><rsub|1><around*|(|x+1|)>+\<delta\><rsub|2><around*|(|x|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|2*x+1|)>*\<beta\><around*|(|x+1|)>-x<rsup|2>*\<delta\><rsub|1><around*|(|x+1|)>-x<rsup|2>*\<delta\><rsub|2><around*|(|x|)>>>|<row|<cell|\<gamma\><around*|(|x|)>>|<cell|=>|<cell|<around*|(|2*x-1|)>*\<beta\><around*|(|x|)>-<around*|(|x-1|)><rsup|2>*\<delta\><rsub|1><around*|(|x|)>>>|<row|<cell|\<gamma\><around*|(|x+1|)>>|<cell|=>|<cell|<around*|(|2*x+1|)>*\<beta\><around*|(|x+1|)>-x<rsup|2>*\<delta\><rsub|1><around*|(|x+1|)>>>|<row|<cell|\<gamma\><around*|(|x|)>-\<gamma\><around*|(|x+1|)>>|<cell|=>|<cell|<around*|(|2*x-1|)>*\<beta\><around*|(|x|)>-<around*|(|2*x+1|)>*\<beta\><around*|(|x+1|)>-<around*|(|x-1|)><rsup|2>*\<delta\><rsub|1><around*|(|x|)>+x<rsup|2>*\<delta\><rsub|1><around*|(|x+1|)>>>|<row|<cell|>|<cell|=>|<cell|2*x*<around*|(|\<beta\><around*|(|x|)>-\<beta\><around*|(|x+1|)>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|\<beta\><around*|(|x+1|)>-\<beta\><around*|(|x|)>|)>-<around*|(|x-1|)><rsup|2>*\<delta\><rsub|1><around*|(|x|)>+x<rsup|2>*<around*|(|\<delta\><rsub|1><around*|(|x|)>-\<delta\><rsub|2><around*|(|x|)>|)>>>|<row|<cell|>|<cell|=>|<cell|2*x*\<delta\><rsub|1><around*|(|x|)>-\<delta\><rsub|1><around*|(|x|)>-<around*|(|x-1|)><rsup|2>*\<delta\><rsub|1><around*|(|x|)>+x<rsup|2>*<around*|(|\<delta\><rsub|1><around*|(|x|)>-\<delta\><rsub|2><around*|(|x|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|2*x-1|)>*\<delta\><rsub|1><around*|(|x|)>-<around*|(|x-1|)><rsup|2>*\<delta\><rsub|1><around*|(|x|)>+x<rsup|2>*<around*|(|\<delta\><rsub|1><around*|(|x|)>-\<delta\><rsub|2><around*|(|x|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|2*x-1|)>*\<delta\><rsub|1><around*|(|x|)>-<around*|(|x<rsup|2>-2*x+1|)>*\<delta\><rsub|1><around*|(|x|)>+x<rsup|2>*\<delta\><rsub|1><around*|(|x|)>-x<rsup|2>*\<delta\><rsub|2><around*|(|x|)>>>|<row|<cell|>|<cell|=>|<cell|<around*|(|4*x-2|)>*\<delta\><rsub|1><around*|(|x|)>-x<rsup|2>*\<delta\><rsub|2><around*|(|x|)>>>|<row|<cell|\<alpha\><around*|(|x|)>>|<cell|=>|<cell|\<alpha\><around*|(|x+1|)>-2*x-1>>|<row|<cell|<wide|\<varepsilon\>|^><around*|(|x|)>>|<cell|=>|<cell|\<varepsilon\><around*|(|x+1|)>+\<gamma\><around*|(|x+1|)>>>|<row|<cell|\<delta\><rsub|2><around*|(|x|)>>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|<wide|\<varepsilon\>|^><around*|(|x|)>|\<alpha\><around*|(|x|)>>|\<rfloor\>>>>|<row|<cell|\<delta\><rsub|1><around*|(|x|)>>|<cell|=>|<cell|\<delta\><rsub|1><around*|(|x+1|)>+\<delta\><rsub|2><around*|(|x|)>>>|<row|<cell|\<varepsilon\><around*|(|x|)>>|<cell|=>|<cell|<wide|\<varepsilon\>|^><around*|(|x|)>-\<alpha\><around*|(|x|)>*\<delta\><rsub|2><around*|(|x|)>>>|<row|<cell|\<gamma\><around*|(|x|)>>|<cell|=>|<cell|\<gamma\><around*|(|x+1|)>+<around*|(|4*x-2|)>*\<delta\><rsub|1><around*|(|x|)>-\<alpha\><around*|(|x|)>*\<delta\><rsub|2><around*|(|x|)>>>|<row|<cell|\<beta\><around*|(|x|)>>|<cell|=>|<cell|\<beta\><around*|(|x+1|)>+\<delta\><rsub|1><around*|(|x|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|d\<leq\><sqrt|n>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|n|d<rsup|2>>|\<rfloor\>>>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>d<rsub|1>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|n|d<rsup|2>>|\<rfloor\>>+<big|sum><rsub|i\<less\>n/d<rsub|1><rsup|2>>i*<around*|(|M<around*|(|<sqrt|<frac|n|i>>|)>-M<around*|(|<sqrt|<frac|n|i+1>>|)>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>d<rsub|1>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|n|d<rsup|2>>|\<rfloor\>>+<big|sum><rsub|i\<less\>n/d<rsub|1><rsup|2>-1>M<around*|(|<sqrt|<frac|n|i>>|)>-<around*|\<lfloor\>|<frac|n|d<rsub|1><rsup|2>>-1|\<rfloor\>>M<around*|(|<sqrt|<frac|n|i+1>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>d<rsub|1>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|n|d<rsup|2>>|\<rfloor\>>+<big|sum><rsub|i\<less\>n/d<rsub|1><rsup|2>-1><around*|(|1-<big|sum><rsub|d\<geq\>2>M<around*|(|<frac|<sqrt|<frac|n|i>>|d>|)>|)>-<around*|\<lfloor\>|<frac|n|d<rsub|1><rsup|2>>-1|\<rfloor\>>M<around*|(|<sqrt|<frac|n|i+1>>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|d\<leq\>d<rsub|1>>\<mu\><around*|(|d|)>*<around*|\<lfloor\>|<frac|n|d<rsup|2>>|\<rfloor\>>+n/d<rsub|1><rsup|2>-2-<big|sum><rsub|i\<less\>n/d<rsub|1><rsup|2>-1><big|sum><rsub|d\<geq\>2>M<around*|(|<sqrt|<frac|n|d<rsup|2>*i>>|)>-<around*|\<lfloor\>|<frac|n|d<rsub|1><rsup|2>>-1|\<rfloor\>>M<around*|(|<sqrt|<frac|n|i+1>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|i\<less\>I><big|sum><rsub|2\<leq\>d\<leq\><sqrt|n/i>>M<around*|(|<sqrt|<frac|n|d<rsup|2>*i>>|)>>|<cell|=>|<cell|M<around*|(|<sqrt|<frac|n|2<rsup|2>>>|)>+M<around*|(|<sqrt|<frac|n|3<rsup|2>>>|)>+\<ldots\>+M<around*|(|<sqrt|<frac|n|<sqrt|n><rsup|2>>>|)>>>|<row|<cell|>|<cell|+>|<cell|M<around*|(|<sqrt|<frac|n|2*2<rsup|2>>>|)>+M<around*|(|<sqrt|<frac|n|2*3<rsup|2>>>|)>+\<ldots\>+M<around*|(|<sqrt|<frac|n|2*<sqrt|n/2><rsup|2>>>|)>>>|<row|<cell|>|<cell|>|<cell|>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|x\<leq\><sqrt|n>>\<mu\><around*|(|x|)>*T<around*|(|<frac|n|x<rsup|2>>|)>>|<cell|=>|<cell|<big|sum><rsub|x\<leq\>n<rsup|2/7>>\<mu\><around*|(|x|)>*T<around*|(|<frac|n|x<rsup|2>>|)>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|n<rsup|2/7>\<less\>x\<leq\>n<rsup|2/5>>\<mu\><around*|(|x|)>*<around*|[|T<around*|(|<frac|n|<around*|(|x-1|)><rsup|2>>|)>-<big|sum><rsub|n/x<rsup|2>\<leq\>u\<less\>n/<around*|(|x-1|)><rsup|2>>\<tau\><around*|(|u|)>|]>>>|<row|<cell|>|<cell|+>|<cell|<big|sum><rsub|k\<leq\>n<rsup|1/5>>T<around*|(|k|)>*<around*|(|M<around*|(|<sqrt|<frac|n|k>>|)>-M<around*|(|<sqrt|<frac|n|k+1>>|)>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|k\<leq\>n<rsup|1/5>>T<around*|(|k|)>*<around*|(|M<around*|(|<sqrt|<frac|n|k>>|)>-M<around*|(|<sqrt|<frac|n|k+1>>|)>|)>>|<cell|=>|<cell|T<around*|(|1|)>*M<around*|(|<sqrt|n>|)>>>|<row|<cell|>|<cell|->|<cell|T<around*|(|1|)>*M<around*|(|<sqrt|<frac|n|2>>|)>+T<around*|(|2|)>*M<around*|(|<sqrt|<frac|n|2>>|)>>>|<row|<cell|>|<cell|->|<cell|\<ldots\>>>|<row|<cell|>|<cell|->|<cell|T<around*|(|n<rsup|1/5>|)>*M<around*|(|n<rsup|2/5>|)>>>|<row|<cell|>|<cell|=>|<cell|M<around*|(|<sqrt|n>|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|T<around*|(|2|)>-T<around*|(|1|)>|)>*M<around*|(|<sqrt|<frac|n|2>>|)>>>|<row|<cell|>|<cell|+>|<cell|\<ldots\>>>|<row|<cell|>|<cell|->|<cell|T<around*|(|n<rsup|1/5>|)>*M<around*|(|n<rsup|2/5>|)>>>|<row|<cell|>|<cell|=>|<cell|M<around*|(|<sqrt|n>|)>+\<tau\><around*|(|2|)>*M<around*|(|<sqrt|<frac|n|2>>|)>+\<ldots\>-T<around*|(|n<rsup|1/5>|)>*M<around*|(|n<rsup|2/5>|)><with|font-series|bold|>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|k\<less\>n<rsup|1/5>>\<tau\><around*|(|k|)>*M<around*|(|<sqrt|<frac|n|k>>|)>-T<around*|(|n<rsup|1/5>|)>*M<around*|(|n<rsup|2/5>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|k\<less\>n<rsup|1/5>>\<tau\><around*|(|k|)>*M<rprime|'><around*|(|k|)>-T<around*|(|n<rsup|1/5>|)>*M<around*|(|n<rsup|2/5>|)>>>>>
</eqnarray*>
Calculating a function over a sequence of integers with ascending divisors
in square-root time.
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|j=a><rsup|n>f<around*|(|<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>|)>>|<cell|=>|<cell|<big|sum><rsub|j=a><rsup|<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>>f<around*|(|<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>|)>+<big|sum><rsub|j=1><rsup|<around*|\<lfloor\>|n/<around*|\<lfloor\>|<sqrt|n>|\<rfloor\>>|\<rfloor\>>-1><around*|(|<around*|\<lfloor\>|<frac|n|j>|\<rfloor\>>-<around*|\<lfloor\>|<frac|n|j+1>|\<rfloor\>>|)>*f<around*|(|j|)>>>>>
</eqnarray*>
Identity for Mertens function over odd divisors to save roughly a factor of
three
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|m\<leq\>n,m
odd>M<around*|(|<frac|n|m>|)>>|<cell|=>|<cell|0<space|1em><around*|(|n\<geq\>2|)>>>|<row|<cell|M<around*|(|n|)>>|<cell|=>|<cell|-<big|sum><rsub|3\<leq\>k\<leq\>n,j
odd>M<around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|=>|<cell|-<big|sum><rsub|3\<leq\>m\<leq\><sqrt|n>,j
odd>M<around*|(|<frac|n|j>|)>>>|<row|<cell|>|<cell|->|<cell|<big|sum><rsub|1\<leq\>k\<less\><sqrt|n>><around*|(|T<rsub|1,odd><around*|(|<frac|n|k>|)>-T<rsub|1,odd><around*|(|<frac|n|k+1>|)>|)>*M<around*|(|k|)>>>|<row|<cell|T<rsub|1,odd><around*|(|<frac|n|k>|)>-T<rsub|1,odd><around*|(|<frac|n|k+1>|)>>|<cell|=>|<cell|<around*|\<lfloor\>|<frac|\<delta\><rsub|1><around*|(|x|)>+\<beta\><around*|(|x|)>
mod 2|2>|\<rfloor\>>>>>>
</eqnarray*>
Derivation of Stieltjes formula with <math|T<rsub|1,odd><around*|(|n|)>> as
a proxy for <math|<big|sum><rsub|k=1><rsup|n><around*|(|-1|)><rsup|k+1>>.
<\eqnarray*>
<tformat|<table|<row|<cell|<big|sum><rsub|1\<leq\>k\<less\><sqrt|n>><around*|(|T<rsub|1,odd><around*|(|<frac|n|k>|)>-T<rsub|1,odd><around*|(|<frac|n|k+1>|)>|)>*M<around*|(|k|)>>|<cell|=>|<cell|<around*|(|T<rsub|1,odd><around*|(|<frac|n|1>|)>-T<rsub|1,odd><around*|(|<frac|n|2>|)>|)>*M<around*|(|1|)>>>|<row|<cell|>|<cell|+>|<cell|<around*|(|T<rsub|1,odd><around*|(|<frac|n|2>|)>-T<rsub|1,odd><around*|(|<frac|n|3>|)>|)>*M<around*|(|2|)>>>|<row|<cell|>|<cell|+>|<cell|\<ldots\>.>>|<row|<cell|>|<cell|+>|<cell|<around*|(|T<rsub|1,odd><around*|(|<frac|n|k<rsub|max>>|)>-T<rsub|1,odd><around*|(|<frac|n|k<rsub|max>+1>|)>|)>*M<around*|(|k<rsub|max>|)>>>|<row|<cell|>|<cell|=>|<cell|M<around*|(|1|)>*T<rsub|1,odd><around*|(|<frac|n|1>|)>>>|<row|<cell|>|<cell|+>|<cell|\<mu\><around*|(|2|)>*T<rsub|1,odd><around*|(|<frac|n|2>|)>>>|<row|<cell|>|<cell|+>|<cell|\<ldots\>>>|<row|<cell|>|<cell|->|<cell|T<rsub|1,odd><around*|(|<frac|n|k<rsub|max>+1>|)>*M<around*|(|k<rsub|max>|)>>>|<row|<cell|>|<cell|=>|<cell|<big|sum><rsub|1\<leq\>k\<leq\><sqrt|n>>\<mu\><around*|(|k|)>*T<rsub|1,odd><around*|(|<frac|n|k>|)>>>|<row|<cell|>|<cell|->|<cell|T<rsub|1,odd><around*|(|<frac|n|<sqrt|n>+1>|)>*M<around*|(|<sqrt|n>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|M<around*|(|<sqrt|<frac|n|m>>|)>>|<cell|=>|<cell|-<big|sum><rsub|3\<leq\>j\<leq\><sqrt|n/m|4>,j
odd>M<around*|(|<sqrt|<frac|n|j<rsup|2>*m>>|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|M<rprime|'><around*|(|k|)>>|<cell|=>|<cell|M<around*|(|<sqrt|<frac|n|k>>|)>=M<around*|(|m|)>>>|<row|<cell|>|<cell|=>|<cell|1-<big|sum><rsub|j\<geq\>2>M<around*|(|<sqrt|<frac|n|j<rsup|2>*k>>|)>>>|<row|<cell|>|<cell|=>|<cell|1-<big|sum><rsub|j\<geq\>2,d>M<rprime|'><around*|(|j<rsup|2>k|)>>>|<row|<cell|>|<cell|=>|<cell|1-<big|sum><rsup|<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>>><rsub|j=2>M<rprime|'><around*|(|j<rsup|2>k|)>-<big|sum><rsup|<around*|\<lfloor\>|m/<around*|\<lfloor\>|<sqrt|m>|\<rfloor\>>|\<rfloor\>>-1><rsub|j=1><around*|(|<around*|\<lfloor\>|<frac|m|j>|\<rfloor\>>-<around*|\<lfloor\>|<frac|m|j+1>|\<rfloor\>>|)>*M<around*|(|j|)>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|\<lfloor\>|<frac|x<rsub|i>|j>|\<rfloor\>>>|<cell|\<leq\>>|<cell|x<rsub|max>\<less\><around*|\<lfloor\>|<frac|x<rsub|i>|<around*|(|j-1|)>>|\<rfloor\>>>>|<row|<cell|<around*|\<lfloor\>|<frac|x<rsub|i>|<around*|(|j+1|)>>|\<rfloor\>>>|<cell|\<leq\>>|<cell|x<rsub|max>\<less\><around*|\<lfloor\>|<frac|x<rsub|i>|j>|\<rfloor\>>>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|\<lfloor\>|<frac|x|j>|\<rfloor\>>>|<cell|\<leq\>>|<cell|x<rsub|max>>>|<row|<cell|<frac|x<rsub|>|j>>|<cell|\<less\>>|<cell|x<rsub|max>+1>>|<row|<cell|<frac|x|x<rsub|max>+1>>|<cell|\<less\>>|<cell|j>>|<row|<cell|<around*|\<lfloor\>|<frac|x|x<rsub|max>+1>|\<rfloor\>>>|<cell|\<leq\>>|<cell|j-1>>|<row|<cell|<around*|\<lfloor\>|<frac|x|x<rsub|max>+1>|\<rfloor\>>+1>|<cell|\<leq\>>|<cell|j>>|<row|<cell|FirstDivisorNotAbove<around*|(|x,x<rsub|max>|)>>|<cell|=>|<cell|<around*|\<lfloor\>|x/<around*|(|x<rsub|max>+1|)>|\<rfloor\>>+1>>>>
</eqnarray*>
<\eqnarray*>
<tformat|<table|<row|<cell|<around*|\<lfloor\>|<frac|x|j>|\<rfloor\>>>|<cell|\<geq\>>|<cell|x<rsub|min>>>|<row|<cell|<frac|x|j>>|<cell|\<geq\>>|<cell|x<rsub|min>>>|<row|<cell|<frac|x|x<rsub|min>>>|<cell|\<geq\>>|<cell|j>>|<row|<cell|<around*|\<lfloor\>|<frac|x|x<rsub|min>>|\<rfloor\>>>|<cell|\<geq\>>|<cell|j>>|<row|<cell|LastDivisorNotBelow<around*|(|x,x<rsub|min>|)>>|<cell|=>|<cell|<around*|\<lfloor\>|x/x<rsub|min>|\<rfloor\>>>>>>
</eqnarray*>
<\eqnarray*>