-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtutorial_ebtel.txt
34 lines (23 loc) · 1.93 KB
/
tutorial_ebtel.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
IDL> time = findgen(10000) ; define time array
A 1 sec time is generally adequate, but in applications where exceptionally strong conductive cooling
is expected (e.g., intense short duration heating events, especially in short loops), a shorter time step
may be necessary. If there is a question, users should compare runs with different time steps and verify
that there are no significant differences in the results.
IDL> heat = fltarr(10000) ; define corresponding heating array
IDL> heat0 = 0.01 ; amplitude of (nano)flare (erg cm^-3 s^-1)
IDL> for i = 0, 250 do heat(i) = heat0*time(i)/250. ; triangular profile rise
IDL> for i = 251, 500 do heat(i) = heat0*(500. - time(i))/250. ; decay
IDL> heat_bkg = 1.e-6 ; low level constant background heating
IDL> heat = heat + heat_bkg
IDL> length = 7.5e9 ; loop half length (cm)
IDL> .compile ebtel2 ; compile
IDL> ebtel2, time, heat, length, t, n, p, v, ta, na, pa, c11, dem_tr, dem_cor, logtdem, /classical ; hydro simulation
or
IDL> ebtel, time, heat, length, t, n, p, v, dem_tr, dem_cor, logtdem, /classical ; hydro simulation
IDL> plot, time, t, xtit='Time (s)', ytit='Temperature (K)' ; plot temperature evolution
IDL> dem_tot = dem_cor + dem_tr ; total differential emission measure (corona plus footpoint)
IDL> gofnt, 'fe_12', 190, 200, t_array, g_array, density=1.e9 ; FeXII (195) G(T) function from CHIANTI
IDL> intensity_ebtel, dem_tot, logtdem, g_array, t_array, int, t, n, length, int_avg ; compute FeXII intensity
IDL> plot, time, int, xtit='Time (s)', ytit='FeXII (195) Intensity' ; plot intensity evolution
IDL> dem60 = total(dem_tot(1000:1059,*),1) ; integrate DEM(T) over 60 s interval starting at t = 1000 s
IDL> plot, logtdem, alog10(dem60), xtit='log T (K)',ytit='log DEM (cm!U-5!N K!U-1!N)', tit='1000-1059 s Integration', xran=[5.,7.], /ynoz ; plot DEM(T) for 60 s integration