forked from JonathanCollu/Robotics_project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
43 lines (37 loc) · 1.81 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from src.agent import PiCarX
from src.Model import ConvPolicyNet
import time
import matplotlib.pyplot as plt
import torch
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-run_name', action='store', type=str, default=None)
parser.add_argument('-cp_name', action='store', type=str, default=None)
parser.add_argument('-epochs', action='store', type=int, default=1000)
parser.add_argument('-M', action='store', type=int, default=1)
parser.add_argument('-T', action='store', type=int, default=7)
parser.add_argument('-gamma', action='store', type=float, default=0.99)
parser.add_argument('-ef', action='store', type=float, default=None)
args = parser.parse_args()
plt.ion()
policy = ConvPolicyNet()
if args.cp_name is not None:
state_dict = torch.load(f"exp_results/{args.cp_name}_weights.pt")
for name, param in state_dict.items():
# if "hidden_layers.1" in name or "hidden_layers.2" in name:
policy.load_state_dict({name: param}, strict=False)
optimizer = torch.optim.Adam(policy.parameters(), lr=3e-4)
value_net = ConvPolicyNet(value=True)
if args.cp_name is not None:
state_dict = torch.load(f"exp_results/{args.cp_name}_weights.pt")
for name, param in state_dict.items():
# if "hidden_layers.1" in name or "hidden_layers.2" in name:
value_net.load_state_dict({name: param}, strict=False)
optimizer_v = torch.optim.Adam(value_net.parameters(), lr=1e-3)
agent = PiCarX(policy, optimizer, value_net, optimizer_v, 20)
try:
agent.train(args.epochs, args.M, args.T, args.gamma, ef=args.ef, run_name=args.run_name)
except KeyboardInterrupt:
print('\n\nInterrupted! Time: {}s'.format(time.time()))
agent.stop_sim(disconnect=True)