forked from TropComplique/mtcnn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_weights_from_caffe_models.py
47 lines (39 loc) · 1.71 KB
/
extract_weights_from_caffe_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import caffe
import numpy as np
"""
The purpose of this script is to convert pretrained weights taken from
official implementation here:
https://github.com/kpzhang93/MTCNN_face_detection_alignment/tree/master/code/codes/MTCNNv2
to required format.
In a nutshell, it just renames and transposes some of the weights.
You don't have to use this script because weights are already in `src/weights`.
"""
def get_all_weights(net):
all_weights = {}
for p in net.params:
if 'conv' in p:
name = 'features.' + p
if '-' in p:
s = list(p)
s[-2] = '_'
s = ''.join(s)
all_weights[s + '.weight'] = net.params[p][0].data
all_weights[s + '.bias'] = net.params[p][1].data
elif len(net.params[p][0].data.shape) == 4:
all_weights[name + '.weight'] = net.params[p][0].data.transpose((0, 1, 3, 2))
all_weights[name + '.bias'] = net.params[p][1].data
else:
all_weights[name + '.weight'] = net.params[p][0].data
all_weights[name + '.bias'] = net.params[p][1].data
elif 'prelu' in p.lower():
all_weights['features.' + p.lower() + '.weight'] = net.params[p][0].data
return all_weights
# P-Net
net = caffe.Net('caffe_models/det1.prototxt', 'caffe_models/det1.caffemodel', caffe.TEST)
np.save('src/weights/pnet.npy', get_all_weights(net))
# R-Net
net = caffe.Net('caffe_models/det2.prototxt', 'caffe_models/det2.caffemodel', caffe.TEST)
np.save('src/weights/rnet.npy', get_all_weights(net))
# O-Net
net = caffe.Net('caffe_models/det3.prototxt', 'caffe_models/det3.caffemodel', caffe.TEST)
np.save('src/weights/onet.npy', get_all_weights(net))