-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrgdecl.sl
2385 lines (2038 loc) · 77.8 KB
/
grgdecl.sl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%==========================================================================%
% GRGdecl.sl Internal Variables, Flags, Properties %
%==========================================================================%
% GRG 3.2 Standard Lisp Source Code (C) 1988-2000 Vadim V. Zhytnikov %
%==========================================================================%
% This file is distributed without any warranty. You may modify it but you %
% are not allowed to remove author's name and/or distribute modified file. %
%==========================================================================%
%
% Notation for GRG symbols :
%
% !!sym!! - Self-Quoted Symbols
% ![sys!] - Internal GRG Control or Working System Variables
% !#id - Internal Variables of Built-in Objects
% !+flag - GRG Specific Flags
% !=prop - GRG Specific Properties
% !*switch - GRG and REDUCE Switches
% funtion!> - GRG functions
%
%========== (1) Internal GRG Control Variables ==========================
(put 'grg 'stat 'endstat) % Making grg; REDUCE command ...
%---------- GRG System Variables --------------------------------------
(global '(
![version!] % Version number
% Start mode :
![autostart!] % Run (grg) atomatically during load grg; or not
% General Status :
![dim!] % Current Dimension 4
![dim1!] % dim-1
![sgn!] % Current Signature (-1 1 1 1)
![sigprod!] % prod(-1 1 1 1)
![dim0!] % Initial Dimension and
![sgn0!] % Signature in the session
![umod!] % Current basis mode
% Metric and Frame Type :
![mtype!] % Metric type: nil - unknown
![mitype!] % 1 - null 2 - diagonal 3 - general
![dtype!] % Metric differentiability: nil - unknown
![ditype!] % 1 - constant 2 - general
![ftype!] % Frame type: nil - unknown
![fitype!] % 1 - holonomic 2 - diagonal 3 - general
![nullm!] % Standard Null Metric for -,+,+,+
![nullm1!] % Standard Null Metric for +,-,-,-
% Others working variables :
![w!] % General purpose
![instr!] % All Commands list
![datl!] % All Objects
![abbr!] % All User-Defined Objects (Abbreviations)
![rconstl!] % List of reserved constants
![sublist!] % Substitutions List
![rpfl!] % Flags and properties which must be cleared
![rpflcr!] % for Coordinates
![rpflcn!] % for Constants
![rpflap!] % for Affine Parameter
![rpflfu!] % for Functions
![tlst!] % List of Energy-Momentum tensors
![slst!] % List of spin forms
![solveq!] % Equations for solve
![allprops!] % All Flags and Props
![allflags!] % important for Load/Unload
![icompos!] % List of Commands allowed in composites
![newabbr!] % New object in assignment
![wi!] ![wh!] ![wf!] ![ws!]
![gfun!] % Generic functions list
% Session Control :
![er!] % Error type
![firsti!] % First instruction indicator for Dimension
![time!] % Timer
![gctime!] % GC Timer
![ttime!] % Total Session Time
![tgctime!] % Total GC Time
![pause!] % Pause regim indicator
![origlower!]
% Switches control :
![flaghis!] % Flags On/Off history list
![flagl!] % GRG Flags list
![flaglo!] % GRG Output-Flags list
![iflago!] % Initial mode of output
![echo!] % Echo in LISTOK>
![flagnil!] % Swithes initailly to nil
![flagt!] % Swithes initially t
![fldtuned!] % nil tuning of FANCY-LOWER-DIGITS is needded
% OS scpecific :
![dirsep!] % The directories separator. This symbol is
% added to the end of GRG environ. var. when
% trying to open files.
% \ for DOS, / for UNIX, : for VMS (?)
% if nil then nothing added.
![syscall!] % Temporary exit to OS and OS commands
% 1 - via SYSTEM (UNIX,DOS)
% 2 - via QUIT (VAX/VMS)
% nil - forbidden
![grgdir!] % Standard Input Didrectory Expanded
![grgdir1!] % Standard Input Didrectory
% Version specific:
![lower!] % If t then background lisp internally is in lower case
% Debugging :
![erst1!] % First ERRORSET debuggin parameter
![erst2!] % Second ERRORSET debuggin parameter
% GRG printing:
![line!] % Current Line for GPRIN
![lline!] % Current Line Length
![gptab!] % Tabulation for GPRIN
![gpfirst!] % First Line marker for GPRIN
![modp!] % Basis mode for write
![allzero!] % Zero-Nonzero components indicator for write
![idwri!] % Writed Data Identifier
% Files manipulation :
![fromf!] % In file
![loa!] % Load file
![unl!] % Global Unload file
![lunl!] % Local Unload file
![wri!] % Global Write file
![lwri!] % Local Write file
% Data evaluation control :
![chain!] % Chain of required data in REQUEST
![way!] % Way for Find/Calculate
% Translation control:
![cs!] % Chanhe Sign
![ch!] % Change Conjugation
![lsrs!] % Left or Right side in equation
![extvar!] % External variables list
![extvara!] % Additional external variables list
![idl!] % For T(J) = expr(J)
![texpr!] % translation
![ivs!] % Iteration vars stack
% Coordinates transformation:
![ocord!] % Old coordinates list
![x!] % X
![dfx!] % d X
![dex!] % @ X
% Basis mode:
![xb!] % d X/\d Y/\...
![xf!] % d X = b
![xv!] % @ X = e
![ccb!] % ~ b
![ccbi!] % ~ e
![dbas!] % d(b/\...) accumulation
% Rotations:
![l!] % L - frame rotaion matrix
![dl!] % det(L) - its det
![sdl!] % sgn(det(L)) - the sign of its det
![li!] % L^(-1) - its inverse
![ls!] % LS - spinor rotation matrix
![dens!] % density factor for an object
% Processor internals:
![tlow!] % T_a (lower index a) for Duialisation
))
(setq ![autostart!] t) % By default we start (grg) during load grg;
%------- Self Quoted Atoms -------------------------------------------
(global '( !!stop!! !!next!! !!er!! ))
(setq !!stop!! '!!stop!!) % This is STOP
(setq !!er!! '!!er!!) % This is ERROR
(setq !!next!! '!!next!!) % This is NEXT
%-----------------------------------------------------------------------
%========== (2) Built-In Objects =======================================
%---- Flags and Properties for Internal Data variables #ID -------------
%
% Prop =type - Type of Component:
% -1 - vector; 0 - algebraic expression, n - n-form.
%
% Prop =idxl - List of Indices. Absent for Scalars. In The List:
% nil - lower frame, t - upper frame,
% 0 - lower holonomic, 1 - upper holonomic,
% (u . n) - un. spinor, (d . n) - do. spinor,
% (uu . n) - up un. spinor, (ud . n) - up do. spinor,
% (n . n) - enimerating, (n) - enum. d-dimensional.
%
% Prop =sidxl - Symmetries List is (sy1 sy2 ...)
% sy = (type el1 el2 ...)
% with type = a | s | h | c which stands for
% Antisymmetric, Symmetric, Hermitian, Cyclic
% el = n | (n1 n2 ...) | sy
% where n is the index number and sy as above.
%
% Prop =way - Ways of Calculation is (el1 el2 ...)
% el = ( (name) (cond) (evfun) data ... )
% data = id | (cond id1 id2 ...) | (t id)
% the second form is included iff cond=true
% the third form defines Main data.
%
% Prop =constr - Restriction when data can be used is
% (fn1 fn2 ...)
% where fn is function call.
%
% Prop =dens - Pseudo-tensor and Density properties
% List of four elements (a b c d)
% a=t/nil - Pseudo for coodrinate transform sgnD
% b=n - Density for coordinate transform D^n
% c=t/nil - Pseudo for rotations sgnL
% d=n - Density for rotations L^n
%
% Flag +noncov - Marks Noncovariant data types for
% preventing Dc and Lie calculation.
% But don't prevent rotations.
%
% Flags +fconn +hconn +uconn +dconn
% types of connection are
% Frame, Holonomic, Spinorial, Conjugate Spinorial
%
% Flag +hold - Prevents rotation or coordinate
% transformation of the object.
%
% Flag +pl - Marks oblects with plural name.
%
% Flag +equ - Marks equations.
%
% Flag +ivar - Marks all internal variables.
%
% Flag +abbr - Marks new user created objects (abbreviations).
%
% Prop =unl - Special function call for Unload.
%
% Prop =datl - Special function call for Write.
%
% Prop =tex - Writre in FANCY/TEX output mode.
% If ID than ID both in TEX and FANCY mode
% If (IT . IF) IT for TEX IF for FANCY
%----- Flags and Prop. for Funs and Vars (Cord, Const, Fun) --------
%
% Flag +grg - Already used by GRG (Can't be declared once again).
%
% Prop =depend - Dependence List for Functions.
%
% Flag +grgvar - Marks Variables: Cord, Const, Implicit Fun.
% So, can be used as var in any expression.
%
% Flag +fun - Marks Functions.
%
% Prop =cord - Coordinate number N (0 1 ... dim-1).
%
% Prop =conj - Complex Conjugated Object.
%
% Prop =subind - Value of Iteration Variable.
%
% Flag +redbad - Specially blocks some atoms.
%
% Reduce Flags: used!* constant
%
% Reduce Flags: subfn symmetric antisymmetric odd even
%
% Reduce Props: simpfn kvalue klist narg
%
%-----------------------------------------------------------------------
%------- Data List -------------------------------------------------
(setq ![datl!] '(
% Coordinates, Constants, Functions, Solutions ...
((Coordinates) ![cord!] )
((Functions) ![fun!] )
((Constants) ![const!] )
((Affine Parameter) ![apar!] )
((Solutions) ![sol!] )
% Metric, Frame, Basis, Volume ...
((Frame) !#!T )
((Vector Frame) !#!D )
((Metric) !#!G )
((Inverse Metric) !#!G!I )
((Det of Metric) !#!d!e!t!G )
((Det of Holonomic Metric) !#!d!e!t!g )
((Sqrt Det of Metric) !#!s!d!e!t!G )
((Volume) !#!V!O!L )
((Basis) !#!b )
((Vector Basis) !#!e )
((S - forms) !#!S )
% Rotation Matrices ...
((Frame Transformation) !#!L )
((Spinorial Transformation) !#!L!S )
% Connection and related objects ...
((Frame Connection) !#!o!m!e!g!a )
((Holonomic Connection) !#!G!A!M!M!A )
((Undotted Connection) !#!o!m!e!g!a!u )
((Dotted Connection) !#!o!m!e!g!a!d )
((Spinorial Connection) ( !#!o!m!e!g!a!u !#!o!m!e!g!a!d ))
((Riemann Frame Connection) !#!r!o!m!e!g!a )
((Riemann Holonomic Connection) !#!R!G!A!M!M!A )
((Riemann Undotted Connection) !#!r!o!m!e!g!a!u )
((Riemann Dotted Connection) !#!r!o!m!e!g!a!d )
((Riemann Spinorial Connection) ( !#!r!o!m!e!g!a!u !#!r!o!m!e!g!a!d ))
((Connection Defect) !#!K )
((Undotted S - forms) !#!S!U )
((Dotted S - forms) !#!S!D )
((Spinorial S - forms) ( !#!S!U !#!S!D ))
% Torsion ...
((Torsion) !#!T!H!E!T!A )
((Contorsion) !#!K!Q )
((Torsion Trace 1 - form) !#!Q!Q )
((Antisymmetric Torsion 3 - form) !#!Q!Q!A )
((Undotted Contorsion) !#!K!U )
((Dotted Contorsion) !#!K!D )
((Spinorial Contorsion) ( !#!K!U !#!K!D ))
((Torsion Trace) !#!Q!T )
((Torsion Pseudo Trace) !#!Q!P )
((Traceless Torsion Spinor) !#!Q!C )
((Torsion Spinors) ( !#!Q!C !#!Q!T !#!Q!P ))
((Torsion Components) ( !#!Q!C !#!Q!T !#!Q!P ))
((Traceless Torsion 2 - form) !#!T!H!Q!C )
((Torsion Trace 2 - form) !#!T!H!Q!T )
((Antisymmetric Torsion 2 - form) !#!T!H!Q!A )
((Torsion 2 - forms) ( ((geq ![dim!] 3) !#!T!H!Q!C)
!#!T!H!Q!T
((geq ![dim!] 3) !#!T!H!Q!A) ))
((Undotted Torsion Trace 2 - form) !#!T!H!Q!T!U )
((Undotted Antisymmetric Torsion 2 - form) !#!T!H!Q!A!U )
((Undotted Traceless Torsion 2 - form) !#!T!H!Q!C!U )
((Undotted Torsion 2 - forms) ( !#!T!H!Q!C!U !#!T!H!Q!T!U !#!T!H!Q!A!U ))
% Nonmetricity ...
((Nonmetricity) !#!N )
((Nonmetricity Defect ) !#!K!N )
((Weyl Vector) !#!N!N!W )
((Nonmetricity Trace) !#!N!N!T )
((Symmetric Nonmetricity 1 - form) !#!N!C )
((Antisymmetric Nonmetricity 1 - form) !#!N!A )
((Nonmetricity Trace 1 - form) !#!N!T )
((Weyl Nonmetricity 1 - form) !#!N!W )
((Nonmetricity 1 - forms) ( !#!N!C
((geq ![dim!] 3) !#!N!A)
!#!N!T
!#!N!W ))
% Curvature ...
((Curvature) !#!O!M!E!G!A )
((Undotted Curvature) !#!O!M!E!G!A!U )
((Dotted Curvature) !#!O!M!E!G!A!D )
((Spinorial Curvature) ( !#!O!M!E!G!A!U !#!O!M!E!G!A!D ))
((Riemann Tensor) !#!R!I!M )
((Ricci Tensor) !#!R!I!C )
((A - Ricci Tensor) !#!R!I!C!A )
((S - Ricci Tensor) !#!R!I!C!S )
((Homothetic Curvature) !#!O!M!E!G!A!H )
((Scalar Curvature) !#!R!R )
((Einstein Tensor) !#!G!T )
((Weyl Spinor) !#!R!W)
((Traceless Ricci Spinor) !#!R!C)
((Ricanti Spinor) !#!R!A)
((Traceless Deviation Spinor) !#!R!B)
((Scalar Deviation) !#!R!D)
((Curvature Spinors) ( !#!R!W !#!R!C !#!R!R
(!*torsion !#!R!B !#!R!A !#!R!D ) ))
((Curvature Components) ( !#!R!W !#!R!C !#!R!R
(!*torsion !#!R!B !#!R!A !#!R!D ) ))
((Undotted Weyl 2 - form) !#!O!M!W!U )
((Undotted Traceless Ricci 2 - form) !#!O!M!C!U )
((Undotted Scalar Curvature 2 - form) !#!O!M!R!U )
((Undotted Ricanti 2 - form) !#!O!M!A!U )
((Undotted Traceless Deviation 2 - form) !#!O!M!B!U )
((Undotted Scalar Deviation 2 - form) !#!O!M!D!U )
((Undotted Curvature 2 - forms)
( !#!O!M!W!U !#!O!M!C!U !#!O!M!R!U (!*torsion !#!O!M!A!U !#!O!M!B!U !#!O!M!D!U )))
((Weyl 2 - form) !#!O!M!W )
((Traceless Ricci 2 - form) !#!O!M!C )
((Scalar Curvature 2 - form) !#!O!M!R )
((Ricanti 2 - form) !#!O!M!A )
((Traceless Deviation 2 - form) !#!O!M!B )
((Antisymmetric Curvature 2 - form) !#!O!M!D )
((Homothetic Curvature 2 - form) !#!O!S!H )
((Antisymmetric S - Ricci 2 - form) !#!O!S!A )
((Traceless S - Ricci 2 - form) !#!O!S!C )
((Antisymmetric S - Curvature 2 - form) !#!O!S!V )
((Symmetric S - Curvature 2 - form) !#!O!S!U )
((Curvature 2 - forms) (
((geq ![dim!] 4) !#!O!M!W )
((geq ![dim!] 3) !#!O!M!C )
!#!O!M!R
((and (or !*torsion !*nonmetr) (geq ![dim!] 3)) !#!O!M!A )
((and (or !*torsion !*nonmetr) (geq ![dim!] 4)) !#!O!M!B )
((and (or !*torsion !*nonmetr) (geq ![dim!] 4)) !#!O!M!D )
(!*nonmetr !#!O!S!H )
((and !*nonmetr (geq ![dim!] 3)) !#!O!S!A )
(!*nonmetr !#!O!S!C )
((and !*nonmetr (geq ![dim!] 4)) !#!O!S!V )
((and !*nonmetr (geq ![dim!] 3)) !#!O!S!U )
))
% Various constants ...
((A - Constants) !#!A!C!O!N!S!T )
((L - Constants) !#!L!C!O!N!S!T )
((M - Constants) !#!M!C!O!N!S!T )
% Scalar field ...
((Scalar Equation) !#!S!C!q )
((Scalar Field) !#!F!I )
((Scalar Action) !#!S!A!C!T )
((Minimal Scalar Action) !#!S!A!C!T!M!I!N )
((Minimal Scalar Energy - Momentum Tensor) !#!T!S!C!L!M!I!N )
% EM field ...
% for all dim ...
((EM Potential) !#!A )
((Current 1 - form) !#!J )
((EM Action) !#!E!M!A!C!T )
((EM 2 - form) !#!F!F )
((EM Tensor) !#!F!T )
((First Maxwell Equation) !#!M!W!F!q )
((Second Maxwell Equation) !#!M!W!S!q )
((Maxwell Equations) ( !#!M!W!F!q !#!M!W!S!q ))
((Continuity Equation) !#!C!O!q )
((EM Energy - Momentum Tensor) !#!T!E!M )
% dim=4 only ...
((First EM Scalar) !#!S!C!F )
((Second EM Scalar) !#!S!C!S )
((EM Scalars) ( !#!S!C!F !#!S!C!S ))
((Selfduality Equation) !#!S!D!q )
((Complex EM 2 - form) !#!F!F!U )
((Complex Maxwell Equation) !#!M!W!U!q )
((Undotted EM Spinor) !#!F!I!U )
((Complex EM Scalar) !#!S!C!U )
((EM Energy - Momentum Spinor) !#!T!E!M!S )
% YM field ...
((YM Potential) !#!A!Y!M )
((Structural Constants) !#!S!C!O!N!S!T )
((YM Action) !#!Y!M!A!C!T )
((YM 2 - form) !#!F!F!Y!M )
((YM Tensor) !#!F!T!Y!M )
((First YM Equation) !#!Y!M!F!q )
((Second YM Equation) !#!Y!M!S!q )
((YM Equations) ( !#!Y!M!F!q !#!Y!M!S!q ))
((YM Energy - Momentum Tensor) !#!T!Y!M )
% Dirac field ...
((Phi Spinor) !#!P!H!I )
((Chi Spinor) !#!C!H!I )
((Dirac Spinor) ( !#!P!H!I !#!C!H!I ))
((Dirac Action 4 - form) !#!D!A!C!T )
((Undotted Dirac Spin 3 - Form) !#!S!P!D!I!U )
((Dirac Energy - Momentum Tensor) !#!T!D!I )
((Phi Dirac Equation) !#!D!P!q )
((Chi Dirac Equation) !#!D!C!q )
((Dirac Equation) ( !#!D!P!q !#!D!C!q ))
% Geodesics and congruences ...
((Geodesic Equation) !#!G!E!O!q )
% Null congruence ...
((Congruence) !#!K!V )
((Null Congruence Condition) !#!N!C!o )
((Geodesics Congruence Condition) !#!G!C!o )
((Congruence Expansion) !#!t!h!e!t!a!O )
((Congruence Squared Rotation) !#!o!m!e!g!a!S!Q!O )
((Congruence Squared Shear) !#!s!i!g!m!a!S!Q!O )
((Optical Scalars)
(!#!t!h!e!t!a!O !#!o!m!e!g!a!S!Q!O !#!s!i!g!m!a!S!Q!O ))
% Kinematics ...
((Velocity Vector) !#!U!V )
((Velocity) !#!U!U )
((Velocity Square) !#!U!S!Q )
((Projector) !#!P!R )
((Acceleration) !#!a!c!c!U )
((Vorticity) !#!o!m!e!g!a!U )
((Volume Expansion) !#!t!h!e!t!a!U )
((Shear) !#!s!i!g!m!a!U )
((Kinematics)
( !#!a!c!c!U !#!o!m!e!g!a!U !#!t!h!e!t!a!U !#!s!i!g!m!a!U ))
% Ideal Fluid ...
((Pressure) !#!P!R!E!S )
((Energy Density) !#!E!N!E!R )
((Ideal Fluid Energy - Momentum Tensor) !#!T!I!F!L )
% Spin Fluid ...
((Spin Fluid Energy - Momentum Tensor) !#!T!S!F!L )
((Spin Density) !#!S!P!F!L!T )
((Spin Density 2 - form) !#!S!P!F!L )
((Undotted Fluid Spin 3 - form) !#!S!P!F!L!U )
((Frenkel Condition) !#!F!C!o )
% Total Energy-Momentum and Spin ...
((Total Energy - Momentum Tensor) !#!T!E!N!M!O!M )
((Total Energy - Momentum Spinor) !#!T!E!N!M!O!M!S )
((Total Energy - Momentum Trace) !#!T!E!N!M!O!M!T )
((Total Undotted Spin 3 - form) !#!S!P!I!N!U )
% Einstein Equations ...
((Einstein Equation) !#!E!E!q )
((Traceless Einstein Equation) !#!C!E!E!q )
((Trace of Einstein Equation) !#!T!E!E!q )
((Spinor Einstein Equations) ( !#!C!E!E!q !#!T!E!E!q ))
% Gravitational Equations ...
((Action) !#!L!A!C!T )
((Undotted Curvature Momentum) !#!P!O!M!E!G!A!U )
((Torsion Momentum) !#!P!T!H!E!T!A )
((Metric Equation) !#!M!E!T!R!q )
((Torsion Equation) !#!T!O!R!S!q )
((Gravitational Equations) ( !#!M!E!T!R!q
(!*torsion !#!T!O!R!S!q )))
))
(prog ( ![idatl!] )
(foreach!> ![www!] in ![datl!] do
(cond ((atom (cadr ![www!]))
(setq ![idatl!] (cons (cadr ![www!]) ![idatl!] )))))
(global ![idatl!])
(flag ![idatl!] '!+ivar))
%------- Plural ----------------------------------------------------
(flag '(
![cord!] ![const!] ![fun!]
!#!T !#!b !#!S !#!S!U !#!S!D
!#!A!C!O!N!S!T !#!M!C!O!N!S!T !#!L!C!O!N!S!T
) '!+pl)
%-------- Equations ----------------------------------------------------
(flag '(
![sol!]
!#!S!C!q
!#!D!P!q !#!D!C!q
!#!Y!M!F!q !#!Y!M!S!q
!#!M!W!F!q !#!M!W!S!q !#!C!O!q !#!S!D!q !#!M!W!U!q
!#!G!E!O!q
!#!N!C!o !#!G!C!o !#!F!C!o
!#!E!E!q !#!T!E!E!q !#!C!E!E!q
!#!M!E!T!R!q !#!T!O!R!S!q
) '!+equ)
%-------- Total Enargy-Momentum and Spin -------------------------------
(setq ![tlst!] '( !#!T!D!I !#!T!E!M !#!T!Y!M !#!T!S!C!L!M!I!N
!#!T!I!F!L !#!T!S!F!L ))
(setq ![slst!] '( !#!S!P!D!I!U !#!S!P!F!L!U ))
%-------- Properties of the Built-In Objects ---------------------------
(put '![sol!] '!=type 0)
% word!!! in =way
% Metric, Farame, Volume ...
(put '!#!T '!=type 1)
(put '!#!T '!=idxl '(t))
(put '!#!T '!=way '( ((By Default) nil (frame0!>) )
((From Vector Frame) nil (frame1!>) (t !#!D) ) ))
(put '!#!T '!=tex "\theta")
(put '!#!D '!=type -1)
(put '!#!D '!=idxl '(nil))
(put '!#!D '!=way '( ((From Frame)
nil (iframe1!>) !#!V!O!L !#!T ) ))
(put '!#!D '!=tex '("\partial" . 182))
(put '!#!G '!=type 0)
(put '!#!G '!=idxl '(nil nil))
(put '!#!G '!=sidxl '((s 1 2)))
(put '!#!G '!=way '( ((By Default) nil (metr0!>) )
((From Inverse Metric) nil (metr1!>) (t !#!G!I) ) ))
(put '!#!G '!=tex '!g)
(put '!#!G!I '!=type 0)
(put '!#!G!I '!=idxl '(t t))
(put '!#!G!I '!=sidxl '((s 1 2)))
(put '!#!G!I '!=way '( ((From Metric) nil (imetr1!>) !#!G ) ))
(put '!#!G!I '!=tex '!g)
(put '!#!d!e!t!G '!=type 0)
(put '!#!d!e!t!G '!=way '( (nil nil (detg1!>) !#!G ) ))
(put '!#!d!e!t!G '!=dens '(nil nil nil -2))
(put '!#!d!e!t!G '!=tex '!g)
(put '!#!d!e!t!g '!=type 0)
(put '!#!d!e!t!g '!=way '( (nil nil (dethg1!>) !#!G !#!T ) ))
(put '!#!d!e!t!g '!=dens '(nil -2 nil nil))
(put '!#!d!e!t!g '!=tex '!g)
(put '!#!s!d!e!t!G '!=type 0)
(put '!#!s!d!e!t!G '!=way '((nil nil (sdetg1!>) !#!G ) ))
(put '!#!s!d!e!t!G '!=dens '(nil nil t -1))
(put '!#!s!d!e!t!G '!=tex "\sqrt{-g}")
(put '!#!V!O!L '!=type '![dim!]) % Variable Type !!!
(put '!#!V!O!L '!=way '((nil nil (vol0!>) !#!s!d!e!t!G !#!T ) ))
(put '!#!V!O!L '!=dens '(t nil t nil))
(put '!#!V!O!L '!=tex "\upsilon")
(put '!#!b '!=type 1)
(put '!#!b '!=idxl '((n)))
(put '!#!b '!=way '(((From Frame) nil (base!>) !#!V!O!L !#!T )
((From Vector Basis) nil (base1!>) (t !#!e) ) ))
(put '!#!e '!=type -1)
(put '!#!e '!=idxl '((n)))
(put '!#!e '!=way '(((From Basis) nil (ibase!>) !#!b ) ))
(put '!#!S '!=type 2)
(put '!#!S '!=idxl '(t t))
(put '!#!S '!=sidxl '((a 1 2)))
(put '!#!S '!=way '((nil nil (makesforms!>) !#!T)))
% Rotation matrices ...
(put '!#!L '!=type 0)
(put '!#!L '!=idxl '(t nil))
(put '!#!L '!=tex '!L)
(put '!#!L!S '!=type 0)
(put '!#!L!S '!=idxl '((u . 1) (uu . 1)))
(put '!#!L!S '!=tex '("\Lambda" . 76))
% Spinorial S-forms ...
(put '!#!S!U '!=type 2)
(put '!#!S!U '!=idxl '((u . 2)))
(put '!#!S!U '!=way '( (nil nil (ssform!> '!#!S!U 2 3) !#!T ) ))
(put '!#!S!U '!=constr '((sp!>)))
(put '!#!S!D '!=type 2)
(put '!#!S!D '!=idxl '((d . 2)))
(put '!#!S!D '!=way '( (nil nil (ssform!> '!#!S!D 3 2) !#!T ) ))
(put '!#!S!D '!=constr '((sp!>)))
% Connection and related objects ...
(flag '( !#!G!A!M!M!A !#!o!m!e!g!a !#!o!m!e!g!a!u !#!o!m!e!g!a!d )
'!+noncov)
(flag '( !#!R!G!A!M!M!A !#!r!o!m!e!g!a !#!r!o!m!e!g!a!u !#!r!o!m!e!g!a!d )
'!+noncov)
(put '!#!G!A!M!M!A '!=type 1)
(put '!#!G!A!M!M!A '!=idxl '(1 0))
(put '!#!G!A!M!M!A '!=way '(
((From Frame Connection) nil
(gfromo!>) !#!T !#!D !#!o!m!e!g!a )
))
(flag '(!#!G!A!M!M!A) '!+hconn)
(put '!#!G!A!M!M!A '!=tex '("\Gamma" . 71))
(put '!#!R!G!A!M!M!A '!=type 1)
(put '!#!R!G!A!M!M!A '!=idxl '(1 0))
(put '!#!R!G!A!M!M!A '!=way '(
((From Riemann Frame Connection) nil
(rgfromro!>) !#!T !#!D !#!r!o!m!e!g!a )
))
(flag '(!#!R!G!A!M!M!A) '!+hconn)
(put '!#!o!m!e!g!a '!=type 1)
(put '!#!o!m!e!g!a '!=idxl '(t nil))
(put '!#!o!m!e!g!a '!=way '(
(nil nil (connec!>) !#!T !#!D !#!G !#!G!I
(!*torsion !#!T!H!E!T!A)
(!*nonmetr !#!N))
((From Spinorial Connection) (sp!-n!>)
(ofromos!> '!#!o!m!e!g!a !#!o!m!e!g!a!u !#!o!m!e!g!a!d)
(t !#!o!m!e!g!a!u) !#!o!m!e!g!a!d )
((From Connection Defect) (tttqandn!>)
(connecplus!> !#!K) !#!T !#!D !#!G !#!G!I (t !#!K))
((From Contorsion) (tttq!>)
(connecplus!> !#!K!Q) !#!T !#!D !#!G !#!G!I (t !#!K!Q))
((From Nonmetricity Defect) (tttn!>)
(connecplus!> !#!K!N) !#!T !#!D !#!G !#!G!I (t !#!K!N))
((From Holonomic Connection) nil
(ofromg!>) !#!T !#!D !#!G!A!M!M!A )
))
(flag '(!#!o!m!e!g!a) '!+fconn)
(put '!#!r!o!m!e!g!a '!=type 1)
(put '!#!r!o!m!e!g!a '!=idxl '(t nil))
(put '!#!r!o!m!e!g!a '!=way '(
(nil nil (connecplus!> nil) !#!T !#!D !#!G !#!G!I) ))
(put '!#!r!o!m!e!g!a '!=constr '((tttqorn!>)))
(flag '(!#!r!o!m!e!g!a) '!+fconn)
(put '!#!o!m!e!g!a!u '!=type 1)
(put '!#!o!m!e!g!a!u '!=idxl '((u . 2)))
(put '!#!o!m!e!g!a!u '!=way '(
(nil nil (uconnec!>) !#!T !#!S!U !#!V!O!L (!*torsion !#!K!U))
((By Conjugation) nil
(conj3!> '!#!o!m!e!g!a!u !#!o!m!e!g!a!d) !#!o!m!e!g!a!d)
((From Frame Connection) nil
(oufromo!> '!#!o!m!e!g!a!u !#!o!m!e!g!a) !#!o!m!e!g!a )
))
(put '!#!o!m!e!g!a!u '!=tex "\omega")
(put '!#!o!m!e!g!a!u '!=constr '((sp!-n!>)))
(flag '(!#!o!m!e!g!a!u) '!+uconn)
(put '!#!o!m!e!g!a!d '!=type 1)
(put '!#!o!m!e!g!a!d '!=idxl '((d . 2)))
(put '!#!o!m!e!g!a!d '!=way '(
(nil nil (dconnec!>) !#!T !#!S!D !#!V!O!L (!*torsion !#!K!D))
((By Conjugation) nil
(conj3!> '!#!o!m!e!g!a!d !#!o!m!e!g!a!u) !#!o!m!e!g!a!u)
((From Frame Connection) nil
(odfromo!> '!#!o!m!e!g!a!d !#!o!m!e!g!a) !#!o!m!e!g!a )
))
(put '!#!o!m!e!g!a!d '!=tex "\omega")
(put '!#!o!m!e!g!a!d '!=constr '((sp!-n!>)))
(flag '(!#!o!m!e!g!a!d) '!+dconn)
(put '!#!r!o!m!e!g!a!u '!=type 1)
(put '!#!r!o!m!e!g!a!u '!=idxl '((u . 2)))
(put '!#!r!o!m!e!g!a!u '!=way '(
(nil nil (ruconnec!>) !#!T !#!S!U !#!V!O!L) ))
(put '!#!r!o!m!e!g!a!u '!=constr '((tttqorn!>) (sp!>)))
(flag '(!#!r!o!m!e!g!a!u) '!+uconn)
(put '!#!r!o!m!e!g!a!d '!=type 1)
(put '!#!r!o!m!e!g!a!d '!=idxl '((d . 2)))
(put '!#!r!o!m!e!g!a!d '!=way '(
(nil nil (rdconnec!>) !#!T !#!S!D !#!V!O!L) ))
(put '!#!r!o!m!e!g!a!d '!=constr '((tttqorn!>) (sp!>)))
(flag '(!#!r!o!m!e!g!a!d) '!+dconn)
% Torsion ...
(put '!#!T!H!E!T!A '!=type 2)
(put '!#!T!H!E!T!A '!=idxl '(t))
(put '!#!T!H!E!T!A '!=constr '((tttq!>)))
(put '!#!T!H!E!T!A '!=way '(
((From Connection Defect) (tttqandn!>) (qfromk!> '!#!K) !#!T !#!K )
((From Contorsion) (tttq!>) (qfromk!> '!#!K!Q) !#!T !#!K!Q )
))
(put '!#!T!H!E!T!A '!=tex '("\Theta" . 81))
(put '!#!Q!Q '!=type 1)
(put '!#!Q!Q '!=way '((nil nil (qqq!>) !#!T!H!E!T!A !#!D )))
(put '!#!Q!Q '!=constr '((tttq!>)))
(put '!#!Q!Q!A '!=type 1)
(put '!#!Q!Q!A '!=way '((nil nil (qqqa!>) !#!T!H!E!T!A !#!T )))
(put '!#!Q!Q!A '!=constr '((dg2!>)(tttq!>)))
(put '!#!K!Q '!=type 1)
(put '!#!K!Q '!=idxl '(t nil))
(put '!#!K!Q '!=way '(
((From Torsion) nil (contor!>) !#!T !#!D !#!G !#!G!I !#!T!H!E!T!A )
((From Spinorial Contorsion) (sp!>)
(ofromos!> '!#!K!Q !#!K!U !#!K!D) (t !#!K!U) (t !#!K!D) )
))
(put '!#!K!Q '!=constr '((tttq!>)))
(put '!#!K!U '!=type 1)
(put '!#!K!U '!=idxl '((u . 2)))
(put '!#!K!U '!=way '(
((From Contorsion) (sp!>) (oufromo!> '!#!K!U !#!K!Q) !#!K!Q)
((By Conjugation) nil (conj3!> '!#!K!U !#!K!D) (t !#!K!D))
))
(put '!#!K!U '!=constr '((tttq!>)(sp!>)))
(put '!#!K!D '!=type 1)
(put '!#!K!D '!=idxl '((d . 2)))
(put '!#!K!D '!=way '(
((From Contorsion) (sp!>) (odfromo!> '!#!K!D !#!K!Q) !#!K!Q)
((By Conjugation) nil (conj3!> '!#!K!D !#!K!U) (t !#!K!U))
))
(put '!#!K!D '!=constr '((tttq!>)(sp!>)))
(put '!#!Q!T '!=type 0)
(put '!#!Q!T '!=idxl '(t))
(put '!#!Q!T '!=way '(
((From Torsion using Spinors) (sp!>) (qtfromthsp!>)
!#!T!H!E!T!A !#!S!U !#!S!D !#!V!O!L )
((From Torsion Trace 1 - form) nil (qtfromqq!>)
!#!Q!Q !#!D !#!G!I )
))
(put '!#!Q!T '!=constr '((tttq!>)))
(put '!#!Q!P '!=type 0)
(put '!#!Q!P '!=idxl '(t))
(put '!#!Q!P '!=way '(
((From Torsion using Spinors) (sp!>) (qpfromthsp!>)
!#!T!H!E!T!A !#!S!U !#!S!D !#!V!O!L )
((From Antisymmetric Torsion 3 - form) (ttt4!>) (qpfromqqa!>)
!#!Q!Q!A !#!D !#!G!I !#!T !#!G )
))
(put '!#!Q!P '!=constr '((tttq!>)(ttt4!>)))
(put '!#!Q!C '!=type 0)
(put '!#!Q!C '!=idxl '((u . 3)(d . 1)))
(put '!#!Q!C '!=way '(
((From Torsion) (sp!>) (qcfromth!>) !#!T!H!E!T!A !#!S!U !#!V!O!L) ))
(put '!#!Q!C '!=constr '((tttq!>)(sp!>)))
(put '!#!T!H!Q!C '!=type 2)
(put '!#!T!H!Q!C '!=idxl '(t))
(put '!#!T!H!Q!C '!=way '(
(nil nil (qcfcomp!>) !#!T!H!E!T!A !#!T!H!Q!T !#!T!H!Q!A )))
(put '!#!T!H!Q!C '!=constr '((tttq!>)(dg2!>)))
(put '!#!T!H!Q!T '!=type 2)
(put '!#!T!H!Q!T '!=idxl '(t))
(put '!#!T!H!Q!T '!=way '(
(nil nil (qtfcomp!>) !#!Q!Q !#!T )))
(put '!#!T!H!Q!T '!=constr '((tttq!>)))
(put '!#!T!H!Q!A '!=type 2)
(put '!#!T!H!Q!A '!=idxl '(t))
(put '!#!T!H!Q!A '!=way '(
(nil nil (qafcomp!>) !#!Q!Q!A !#!D !#!G!I )))
(put '!#!T!H!Q!A '!=constr '((tttq!>)(dg2!>)))
(put '!#!T!H!Q!C!U '!=type 2)
(put '!#!T!H!Q!C!U '!=idxl '(t))
(put '!#!T!H!Q!C!U '!=way '(
(nil (sp!>) (trfr!> '!#!T!H!Q!C!U 'gcf!> '!#!S!U) !#!S!U !#!Q!C ) ))
(put '!#!T!H!Q!C!U '!=constr '((sp!>)(tttq!>)))
(put '!#!T!H!Q!T!U '!=type 2)
(put '!#!T!H!Q!T!U '!=idxl '(t))
(put '!#!T!H!Q!T!U '!=way '(
(nil (sp!>) (trfr!> '!#!T!H!Q!T!U 'gqf!> '!#!S!U) !#!S!U !#!Q!T ) ))
(put '!#!T!H!Q!T!U '!=constr '((sp!>)(tttq!>)))
(put '!#!T!H!Q!A!U '!=type 2)
(put '!#!T!H!Q!A!U '!=idxl '(t))
(put '!#!T!H!Q!A!U '!=way '(
(nil (sp!>) (trfr!> '!#!T!H!Q!A!U 'gpf!> '!#!S!U) !#!S!U !#!Q!P ) ))
(put '!#!T!H!Q!A!U '!=constr '((sp!>)(tttq!>)))
% Nonmetricity ...
(put '!#!N '!=type 1)
(put '!#!N '!=idxl '(nil nil))
(put '!#!N '!=sidxl '((s 1 2)))
(put '!#!N '!=way '(
((From Connection Defect) (tttqandn!>) (nfromk!> '!#!K) !#!G !#!K )
((From Nonmetricity Defect) (tttn!>) (nfromk!> '!#!K!N) !#!G !#!K!N )
))
(put '!#!N '!=constr '((tttn!>)))
(put '!#!K!N '!=type 1)
(put '!#!K!N '!=idxl '(t nil))
(put '!#!K!N '!=way '(
((From Nonmetricity) nil (nondef!>) !#!T !#!D !#!G !#!G!I !#!N )
))
(put '!#!K!N '!=constr '((tttn!>)))
(put '!#!K '!=type 1)
(put '!#!K '!=idxl '(t nil))
(put '!#!K '!=way '(
(nil nil (conndef!>) !#!T !#!D !#!G !#!G!I !#!T!H!E!T!A !#!N )
))
(put '!#!K '!=constr '((tttqandn!>)))
(put '!#!N!N!W '!=type 1)
(put '!#!N!N!W '!=way '( (nil nil (compnnw!>) !#!N !#!G!I )) )
(put '!#!N!N!W '!=constr '((tttn!>)))
(put '!#!N!N!T '!=type 1)
(put '!#!N!N!T '!=way '(
(nil nil (compnnt!>) !#!N !#!G!I !#!D !#!T !#!N!N!W )) )
(put '!#!N!N!T '!=constr '((tttn!>)))
(put '!#!N!W '!=type 1)
(put '!#!N!W '!=idxl '(nil nil))
(put '!#!N!W '!=sidxl '((s 1 2)))
(put '!#!N!W '!=way '(
(nil nil (compnw!>) !#!G !#!N!N!W )) )
(put '!#!N!W '!=constr '((tttn!>)))
(put '!#!N!T '!=type 1)
(put '!#!N!T '!=idxl '(nil nil))
(put '!#!N!T '!=sidxl '((s 1 2)))
(put '!#!N!T '!=way '(
(nil nil (compnt!>) !#!G !#!T !#!N!N!T )) )
(put '!#!N!T '!=constr '((tttn!>)))
(put '!#!N!A '!=type 1)
(put '!#!N!A '!=idxl '(nil nil))
(put '!#!N!A '!=sidxl '((s 1 2)))
(put '!#!N!A '!=way '(
(nil nil (compna!>) !#!D !#!T !#!N !#!N!W !#!N!T )))
(put '!#!N!A '!=constr '((tttn!>)(dg2!>)))
(put '!#!N!C '!=type 1)
(put '!#!N!C '!=idxl '(nil nil))
(put '!#!N!C '!=sidxl '((s 1 2)))
(put '!#!N!C '!=way '(
(nil nil (compnc!>) !#!N ((geq ![dim!] 3) !#!N!A) !#!N!T !#!N!W )))
(put '!#!N!C '!=constr '((tttn!>)))
% Curvature ...
(put '!#!O!M!E!G!A '!=type 2)
(put '!#!O!M!E!G!A '!=idxl '(t nil))
(put '!#!O!M!E!G!A '!=way '(
(nil nil (curvature!>) !#!o!m!e!g!a )
((From Spinorial Curvature) (sp!-n!>)
(ofromos!> '!#!O!M!E!G!A !#!O!M!E!G!A!U !#!O!M!E!G!A!D)
(t !#!O!M!E!G!A!U) !#!O!M!E!G!A!D )
))
(put '!#!O!M!E!G!A '!=tex '("\Omega" . 87))
(put '!#!O!M!E!G!A!U '!=type 2)
(put '!#!O!M!E!G!A!U '!=idxl '((u . 2)))
(put '!#!O!M!E!G!A!U '!=way '(
(nil nil (scurvature!> '!#!O!M!E!G!A!U !#!o!m!e!g!a!u)
!#!o!m!e!g!a!u )
((By Conjugation) nil
(conj3!> '!#!O!M!E!G!A!U !#!O!M!E!G!A!D) !#!O!M!E!G!A!D)
((From Curvature) nil
(oufromo!> '!#!O!M!E!G!A!U !#!O!M!E!G!A) !#!O!M!E!G!A )
))
(put '!#!O!M!E!G!A!U '!=constr '((sp!-n!>)))
(put '!#!O!M!E!G!A!U '!=tex '("\Omega" . 87))
(put '!#!O!M!E!G!A!D '!=type 2)
(put '!#!O!M!E!G!A!D '!=idxl '((d . 2)))
(put '!#!O!M!E!G!A!D '!=way '(
(nil nil (scurvature!> '!#!O!M!E!G!A!D !#!o!m!e!g!a!d)
!#!o!m!e!g!a!d )
((By Conjugation) nil
(conj3!> '!#!O!M!E!G!A!D !#!O!M!E!G!A!U) !#!O!M!E!G!A!U)
((From Curvature) nil
(odfromo!> '!#!O!M!E!G!A!D !#!O!M!E!G!A) !#!O!M!E!G!A )
))
(put '!#!O!M!E!G!A!D '!=constr '((sp!-n!>)))
(put '!#!O!M!E!G!A!D '!=tex '("\Omega" . 87))
(put '!#!R!I!M '!=type 0)
(put '!#!R!I!M '!=idxl '(t nil nil nil))
(put '!#!R!I!M '!=sidxl '((a 3 4)))
(put '!#!R!I!M '!=way '(
(nil nil (riemm!>) !#!D !#!O!M!E!G!A ) ))
(put '!#!R!I!M '!=tex '!R)
(put '!#!R!I!C '!=type 0)
(put '!#!R!I!C '!=idxl '( nil nil))
(put '!#!R!I!C '!=sidxl '((s 1 2)))
(put '!#!R!I!C '!=way '(
((From Curvature) nil (riccio!>) !#!D !#!G !#!G!I !#!O!M!E!G!A )
((From Riemann Tensor) nil (ricci!>) !#!R!I!M ) ))
(put '!#!R!I!C '!=tex '!R)
(put '!#!R!I!C!A '!=type 0)
(put '!#!R!I!C!A '!=idxl '( nil nil))
(put '!#!R!I!C!A '!=way '(
((From Curvature) nil (riccioa!>) !#!D !#!G !#!G!I !#!O!M!E!G!A )))
(put '!#!R!I!C!A '!=constr '((tttn!>)))
(put '!#!R!R '!=type 0)
(put '!#!R!R '!=way '(
((From A - Ricci Tensor) (tttn!>) (rscalara!>) !#!G!I (t !#!R!I!C!A) )
((From Ricci Tensor) nil (rscalar!>) !#!G!I !#!R!I!C )
((From Spinor Curvature) (sp!-n!>)
(rrsp!>) (t !#!O!M!E!G!A!U) !#!S!U !#!V!O!L )
))
(put '!#!R!R '!=tex '!R)
(put '!#!G!T '!=type 0)
(put '!#!G!T '!=idxl '( nil nil))
(put '!#!G!T '!=sidxl '((s 1 2)))
(put '!#!G!T '!=way '(
(nil nil (gtensor!>) !#!G !#!R!R !#!R!I!C ) ))
(put '!#!R!W '!=type 0)
(put '!#!R!W '!=idxl '((u . 4)))
(put '!#!R!W '!=way '(
((From Spinor Curvature) nil (rwsp!>) !#!O!M!E!G!A!U !#!S!U !#!V!O!L)))
(put '!#!R!W '!=tex '!C)
(put '!#!R!W '!=constr '((sp!-n!>)))
(put '!#!R!C '!=type 0)
(put '!#!R!C '!=idxl '((u . 2)(d . 2)))
(put '!#!R!C '!=sidxl '((h 1 2)))
(put '!#!R!C '!=way '(
((From Spinor Curvature) nil (rcsp!>)
!#!O!M!E!G!A!U !#!S!D !#!V!O!L
(!*torsion !#!O!M!E!G!A!D !#!S!U))))
(put '!#!R!C '!=tex '!C)
(put '!#!R!C '!=constr '((sp!-n!>)))
(put '!#!R!A '!=type 0)
(put '!#!R!A '!=idxl '((u . 2)))
(put '!#!R!A '!=way '(
((From Spinor Curvature) nil (rasp!>) !#!O!M!E!G!A!U !#!S!U !#!V!O!L)))
(put '!#!R!A '!=tex '!A)
(put '!#!R!A '!=constr '((tttq!>)(sp!-n!>)))
(put '!#!R!B '!=type 0)
(put '!#!R!B '!=idxl '((u . 2)(d . 2)))