-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathriemannian_tree.py
196 lines (143 loc) · 6.06 KB
/
riemannian_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import tensorflow as tf
import tqdm
import networkx as nx
from sklearn.neighbors import NearestNeighbors
"""
along the lines of
Fast Approximate Geodesics for Deep Generative Models
Nutan Chen, Francesco Ferroni, Alexej Klushyn, Alexandros Paraschos, Justin Bayer, Patrick van der Smagt
"""
class RiemannianMetric(object):
def __init__(self, x, z, session):
self.x = x
self.z = z
self.session = session
def create_tf_graph(self):
"""
creates the metric tensor (J^T J and J being the jacobian of the decoder),
which can be evaluated at any point in Z
and
the magnification factor
"""
# the metric tensor
output_dim = self.x.shape[1].value
# derivative of each output dim wrt to input (tf.gradients would sum over the output)
J = [tf.gradients(self.x[:, _], self.z)[0] for _ in range(output_dim)]
J = tf.stack(J, axis=1) # batch x output x latent
self.J = J
G = tf.transpose(J, [0, 2, 1]) @ J # J^T \cdot J
self.G = G
# magnification factor
MF = tf.sqrt(tf.linalg.det(G))
self.MF = MF
def riemannian_distance_along_line(self, z1, z2, n_steps):
"""
calculates the riemannian distance between two near points in latent space on a straight line
the formula is L(z1, z2) = \int_0^1 dt \sqrt(\dot \gamma^T J^T J \dot gamma)
since gamma is a straight line \gamma(t) = t z_1 + (1-t) z_2, we get
L(z1, z2) = \int_0^1 dt \sqrt([z_1 - z2]^T J^T J [z1-z2])
L(z1, z2) = \int_0^1 dt \sqrt([z_1 - z2]^T G [z1-z2])
z1: starting point
z2: end point
n_steps: number of discretization steps of the integral
"""
# discretize the integral aling the line
t = np.linspace(0, 1, n_steps)
dt = t[1] - t[0]
the_line = np.concatenate([_ * z1 + (1 - _) * z2 for _ in t])
if True:
# for weird reasons it seems to be alot faster to first eval G then do matrix mutliple outside of TF
G_eval = self.session.run(self.G, feed_dict={self.z: the_line})
# eval the integral at discrete point
L_discrete = np.sqrt((z1-z2) @ G_eval @ (z1-z2).T)
L_discrete = L_discrete.flatten()
L = np.sum(dt * L_discrete)
else:
# THIS IS ALOT (10x) slower, although its all in TF
DZ = tf.constant(z1 - z2)
DZT = tf.constant((z1 - z2).T)
tmp_ = tf.tensordot(self.G, DZT, axes=1)
tmp_ = tf.einsum('j,ijk->ik', DZ[0], tmp_ )
# tmp_ = tf.tensordot(DZ, tmp_, axes=1)
L_discrete = tf.sqrt(tmp_) # this is a function of z, since G(z)
L_eval = self.session.run(L_discrete, feed_dict={self.z: the_line})
L_eval = L_eval.flatten()
L = np.sum(dt * L_eval)
return L
class RiemannianTree(object):
"""docstring for RiemannianTree"""
def __init__(self, riemann_metric):
super(RiemannianTree, self).__init__()
self.riemann_metric = riemann_metric # decoder input (tf_variable)
def create_riemannian_graph(self, z, n_steps, n_neighbors):
n_data = len(z)
knn = NearestNeighbors(n_neighbors=n_neighbors, metric='euclidean')
knn.fit(z)
G = nx.Graph()
# Nodes
for i in range(n_data):
n_attr = {f'z{k}': float(z[i, k]) for k in range(z.shape[1])}
G.add_node(i, **n_attr)
# edges
for i in tqdm.trange(n_data):
distances, indices = knn.kneighbors(z[i:i+1])
# first dim is for samples (z), but we only have one
distances = distances[0]
indices = indices[0]
for ix, dist in zip(indices, distances):
# calculate the riemannian distance of z[i] and its nn
# save some computation if we alrdy calculated the other direction
if (i, ix) in G.edges or (ix, i) in G.edges or i == ix:
continue
L_riemann = self.riemann_metric.riemannian_distance_along_line(z[i:i+1], z[ix:ix+1], n_steps=n_steps)
L_euclidean = dist
# note nn-distances are NOT symmetric
edge_attr = {'weight': float(1/L_riemann),
'weight_euclidean': float(1/L_euclidean),
'distance_riemann': float(L_riemann),
'distance_euclidean': float(L_euclidean)}
G.add_edge(i, ix, **edge_attr)
return G
def main():
import keras
from keras.models import Sequential
from keras.layers import Dense, Input
latent_dim = 2
output_dim = 1
m = Sequential()
m.add(Dense(200, activation='tanh', input_shape=(latent_dim, )))
m.add(Dense(200, activation='tanh', ))
m.add(Dense(output_dim, activation='tanh'))
# plot the model real quick
inp = np.random.uniform(-50,50, size=(1000, latent_dim))
outp = m.predict(inp)
plt.figure()
plt.scatter(inp[:,0], inp[:,1])
plt.figure()
plt.scatter(outp[:,0], outp[:,1])
session = tf.Session()
session.run(tf.global_variables_initializer())
rmetric = RiemannianMetric(x=m.output, z=m.input, session=session)
rmetric.create_tf_graph()
mf = session.run(rmetric.MF, {rmetric.z: inp})
plt.figure()
plt.scatter(inp[:,0], inp[:,1], c=mf)
z1 = np.array([[1, 10]])
z2 = np.array([[10, 2]])
# for steps in [100,1_000,10_000,100_000]:
# q = r.riemannian_distance_along_line(z1, z2, n_steps=steps)
# print(q)
import sklearn.datasets
z, _ = sklearn.datasets.make_swiss_roll(n_samples=1000, noise=0.5, random_state=None)
z = z[:,[0,2]]
z = np.random.uniform(-50,50, size=(1000, latent_dim))
# plt.scatter(z[:,0], z[:,1])
outp = m.predict(z)
plt.figure()
plt.scatter(outp[:,0], outp[:,1])
rTree = RiemannianTree(rmetric)
G = rTree.create_riemannian_graph(z, n_steps=1000, n_neighbors=10)
# can use G to do shortest path finding now
if __name__ == '__main__':
main()