forked from jensolson/SPX-Gamma-Exposure
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyVolLib.py
125 lines (117 loc) · 3.56 KB
/
pyVolLib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
Jens Olson
"""
import numpy as np
from py_vollib.black.implied_volatility import implied_volatility
from py_vollib.black.greeks.numerical import delta, gamma, theta, vega
from py_vollib.black_scholes.implied_volatility import implied_volatility as bs_IV
from py_vollib.black_scholes.greeks.numerical import delta as bs_delta
from py_vollib.black_scholes_merton.greeks.numerical import gamma as bsm_gamma
# Black calcs for futures
def blackIV(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
iv = implied_volatility(discounted_option_price=df['Mid'], # change to 'Mid'
F=F,
K=df['Strike'],
r=rf,
t=df['BDTE']/252,
flag=df['Flag'])
except:
iv = np.nan
return iv
def blackDelta(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
delt = delta(flag=df['Flag'],
F=F,
K=df['Strike'],
t=df['BDTE']/252,
r=rf,
sigma=df['IV'])
except:
delt = np.nan
return delt
def blackGamma(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
gam = gamma(flag=df['Flag'],
F=F,
K=df['Strike'],
t=df['BDTE']/252,
r=rf,
sigma=df['IV'])
except:
gam = np.nan
return gam
def blackVega(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
veg = vega(flag=df['Flag'],
F=F,
K=df['Strike'],
t=df['BDTE']/252,
r=rf,
sigma=df['IV'])
except:
veg = np.nan
return veg
def blackTheta(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
thet = theta(flag=df['Flag'],
F=F,
K=df['Strike'],
t=df['BDTE']/252,
r=rf,
sigma=df['IV'])
except:
thet = np.nan
return thet
# Black Scholes calcs for equities
def blackScholesIV(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
iv = bs_IV(price=df['Mid'], # change to 'Mid'
S=F,
K=df['Strike'],
r=rf,
t=df['BDTE']/252,
flag=df['Flag'])
except:
iv = np.nan
return iv
def blackScholesDelta(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
delt = bs_delta(flag=df['Flag'],
S=F,
K=df['Strike'],
t=df['BDTE']/252,
r=rf,
sigma=df['IV'])
except:
delt = np.nan
return delt
def blackScholesGamma(df, F=None, rf=None):
if F is None: F = df['F']
if rf is None: rf = .02
try:
gam = bsm_gamma(flag=df['Flag'],
S=F,
K=df['Strike'],
t=df['BDTE']/252,
r=rf,
sigma=df['IV'],
q=.015)
except:
gam = np.nan
return gam