-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathgraph.py
204 lines (175 loc) · 7 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Graph class
from __future__ import print_function
from builtins import range
from future.utils import iteritems
import numpy as np
from node import FacNode, VarNode
import pdb
""" Factor Graph classes forming structure for PGMs
Basic structure is port of MATLAB code by J. Pacheco
Central difference: nbrs stored as references, not ids
(makes message propagation easier)
"""
class Graph:
""" Putting everything together
"""
def __init__(self):
self.var = {}
self.fac = []
self.dims = []
self.converged = False
def addVarNode(self, name, dim):
newId = len(self.var)
newVar = VarNode(name, dim, newId)
self.var[name] = newVar
self.dims.append(dim)
return newVar
def addFacNode(self, P, *args):
newId = len(self.fac)
newFac = FacNode(P, newId, *args)
self.fac.append(newFac)
return newFac
def disableAll(self):
""" Disable all nodes in graph
Useful for switching on small subnetworks
of bayesian nets
"""
for k, v in iteritems(self.var):
v.disable()
for f in self.fac:
f.disable()
def reset(self):
""" Reset messages to original state
"""
for k, v in iteritems(self.var):
v.reset()
for f in self.fac:
f.reset()
self.converged = False
def sumProduct(self, maxsteps=500):
""" This is the algorithm!
Each timestep:
take incoming messages and multiply together to produce outgoing for all nodes
then push outgoing to neighbors' incoming
check outgoing v. previous outgoing to check for convergence
"""
# loop to convergence
timestep = 0
while timestep < maxsteps and not self.converged: # run for maxsteps cycles
timestep = timestep + 1
print(timestep)
for f in self.fac:
# start with factor-to-variable
# can send immediately since not sending to any other factors
f.prepMessages()
f.sendMessages()
for k, v in iteritems(self.var):
# variable-to-factor
v.prepMessages()
v.sendMessages()
# check for convergence
t = True
for k, v in iteritems(self.var):
t = t and v.checkConvergence()
if not t:
break
if t:
for f in self.fac:
t = t and f.checkConvergence()
if not t:
break
if t: # we have convergence!
self.converged = True
# if run for 500 steps and still no convergence:impor
if not self.converged:
print("No convergence!")
def marginals(self, maxsteps=500):
""" Return dictionary of all marginal distributions
indexed by corresponding variable name
"""
# Message pass
self.sumProduct(maxsteps)
marginals = {}
# for each var
for k, v in iteritems(self.var):
if v.enabled: # only include enabled variables
# multiply together messages
vmarg = 1
for i in range(0, len(v.incoming)):
vmarg = vmarg * v.incoming[i]
# normalize
n = np.sum(vmarg)
vmarg = vmarg / n
marginals[k] = vmarg
return marginals
def bruteForce(self):
""" Brute force method. Only here for completeness.
Don't use unless you want your code to take forever to produce results.
Note: index corresponding to var determined by order added
Problem: max number of dims in numpy is 32???
Limit to enabled vars as work-around
"""
# Figure out what is enabled and save dimensionality
enabledDims = []
enabledNids = []
enabledNames = []
enabledObserved = []
for k, v in iteritems(self.var):
if v.enabled:
enabledNids.append(v.nid)
enabledNames.append(k)
enabledObserved.append(v.observed)
if v.observed < 0:
enabledDims.append(v.dim)
else:
enabledDims.append(1)
# initialize matrix over all joint configurations
joint = np.zeros(enabledDims)
# loop over all configurations
self.configurationLoop(joint, enabledNids, enabledObserved, [])
# normalize
joint = joint / np.sum(joint)
return {'joint': joint, 'names': enabledNames}
def configurationLoop(self, joint, enabledNids, enabledObserved, currentState):
""" Recursive loop over all configurations
Used for brute force computation
joint - matrix storing joint probabilities
enabledNids - nids of enabled variables
enabledObserved - observed variables (if observed!)
currentState - list storing current configuration of vars up to this point
"""
currVar = len(currentState)
if currVar != len(enabledNids):
# need to continue assembling current configuration
if enabledObserved[currVar] < 0:
for i in range(0,joint.shape[currVar]):
# add new variable value to state
currentState.append(i)
self.configurationLoop(joint, enabledNids, enabledObserved, currentState)
# remove it for next value
currentState.pop()
else:
# do the same thing but only once w/ observed value!
currentState.append(enabledObserved[currVar])
self.configurationLoop(joint, enabledNids, enabledObserved, currentState)
currentState.pop()
else:
# compute value for current configuration
potential = 1.
for f in self.fac:
if f.enabled and False not in [x.enabled for x in f.nbrs]:
# figure out which vars are part of factor
# then get current values of those vars in correct order
args = [currentState[enabledNids.index(x.nid)] for x in f.nbrs]
# get value and multiply in
potential = potential * f.P[tuple(args)]
# now add it to joint after correcting state for observed nodes
ind = [currentState[i] if enabledObserved[i] < 0 else 0 for i in range(0, currVar)]
joint[tuple(ind)] = potential
def marginalizeBrute(self, brute, var):
""" Util for marginalizing over joint configuration arrays produced by bruteForce
"""
sumout = list(range(0, len(brute['names'])))
del sumout[brute['names'].index(var)]
marg = np.sum(brute['joint'], tuple(sumout))
return marg / np.sum(marg) # normalize to sum to one