-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
367 lines (320 loc) · 13.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python
import sys, os
import time
import random
import pygame as pyg
from pygame.locals import *
import torch
from torch.optim import Adam, RMSprop
from torch.optim.lr_scheduler import CyclicLR
import torch.nn.functional as F
from configs import *
from utils.utilities import *
from ai.model import Transition
def draw_object(scr, color, position):
pyg.draw.rect(scr, color, position)
def select_action(state, n_actions, steps_done):
sample = np.random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * np.exp(
-1.0 * steps_done / EPS_DECAY
)
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor(
[[random.randrange(n_actions)]], device=device, dtype=torch.long
)
if __name__ == "__main__":
# In linux center the window
os.environ["SDL_VIDEO_CENTERED"] = "1"
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
# Pygame init loop
pyg.init()
# confs for pygame
stop_game = False
clock = pyg.time.Clock()
font = pyg.font.Font(None, 20)
# number o actions the agent can do
n_actions = 4
# number of steps done, each step is a run in while loop
steps_done = 0
# number of games played
n_game = 0
# Action to be executed by the agent
action = None
# Train phase
train, exploit, show_screen = True, True, True
options = {
"restart_mem": False,
"restart_models": False,
"restart_optim": False,
"random_clean_memory": False,
"opt": "rmsprop",
}
# Screen size
size = width, height = W_WIDTH, W_HEIGHT
screen = pyg.Surface(size)
if show_screen:
screen = pyg.display.set_mode(size, pyg.DOUBLEBUF)
# Icon and Title
pyg.display.set_icon(pyg.image.load("./img/snake.png"))
pyg.display.set_caption("Snake Plissken")
# print(get_game_screen(screen, device).shape)
# Load model
md_name = "snakeplissken_m2.model"
policy_net, target_net, optimizer, memories = load_model(
md_name, n_actions, device, **options
)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
# Starting High learning rate
for param_group in optimizer.param_groups:
if param_group["lr"] != 1e-6:
param_group["lr"] = 1e-6
break
# Memory
# Short is garbage
short_memory = memories["short"]
# Long is were the bad and good are
good_long_memory = memories["good"]
bad_long_memory = memories["bad"]
vloss = [0]
# Game elements started
t_score, p_score, score = [1], 0, 0
wall = get_walls(width, height)
snake, apples = start_game(width, height)
state, next_state = None, None
t_start_game = time.time()
# Game Main loop
while True:
if show_screen:
for event in pyg.event.get():
if event.type == pyg.QUIT:
if train:
memories = {
"short": short_memory,
"good": good_long_memory,
"bad": bad_long_memory,
}
save_model(md_name, policy_net, target_net, optimizer, memories)
pyg.quit()
sys.exit()
# Stop the game, and restart
if stop_game:
# Restart game elements
state, next_state = None, None
stop_game = False
# Zeroed elapsed time
elapsed_time = 0
# Number of games +1
n_game += 1
t_score += [p_score]
if not train:
print(f"Score : {p_score}")
p_score, score = 0, 0
snake, apples = start_game(width, height)
# Load again the new screen: Initial State
if state is None:
state = get_state(screen, device)
# Action and reward of the agent
if train and not exploit:
action = select_action(state, n_actions, steps_done)
else:
with torch.no_grad():
action = policy_net(state).max(1)[1].view(1, 1)
# Key movements of agent to be done
K = action.item()
if K == 0 and snake.head().direction != KEY["DOWN"]:
snake.head().direction = KEY["UP"]
elif K == 1 and snake.head().direction != KEY["UP"]:
snake.head().direction = KEY["DOWN"]
elif K == 2 and snake.head().direction != KEY["RIGHT"]:
snake.head().direction = KEY["LEFT"]
elif K == 3 and snake.head().direction != KEY["LEFT"]:
snake.head().direction = KEY["RIGHT"]
# Human keys!
# pressed = pyg.key.get_pressed()
# if pressed[K_UP] and snake.head().direction != KEY["DOWN"]:
# snake.head().direction = KEY["UP"]
# elif pressed[K_DOWN] and snake.head().direction != KEY["UP"]:
# snake.head().direction = KEY["DOWN"]
# elif pressed[K_LEFT] and snake.head().direction != KEY["RIGHT"]:
# snake.head().direction = KEY["LEFT"]
# elif pressed[K_RIGHT] and snake.head().direction != KEY["LEFT"]:
# snake.head().direction = KEY["RIGHT"]
# Move of snake...
snake.move()
# Snake crash to its tail
if check_crash(snake):
score = SNAKE_EAT_ITSELF_PRIZE # + sum([1e-3 for segment in snake.stack])
stop_game = True
# Wall collision
# Check limits ! Border of screen
for block in wall:
if check_collision(snake.head(), block):
score = WALL_PRIZE
stop_game = True
break
# Check collision between snake and apple
del_apples = []
for i, apple in enumerate(apples):
if check_collision(snake.head(), apple):
del_apples.append(i)
p_score += APPLE_PRIZE
score = APPLE_PRIZE
snake.grow()
break
# Clean screen
screen.fill(BLACK)
# Draw Border
for block in wall:
draw_object(screen, block.color, block.position)
# Draw snake
for segment in snake.stack:
draw_object(screen, segment.color, (segment.x, segment.y) + segment.size)
# Draw appples
if len(apples) == 0:
apples = get_apples(width, height, get_snake_position(snake))
for apple in apples:
draw_object(screen, apple.color, apple.position)
for i in del_apples:
apples[i] = None
apples = list(filter(None.__ne__, apples))
# Reload apples position after some time
if steps_done % APPLE_RELOAD_STEPS == 0:
apples = get_apples(width, height, get_snake_position(snake))
# Next state for the agent
next_state = None
# Give some points because it alive
if not stop_game:
score = SNAKE_ALIVE_PRIZE if score == 0 else score
next_state = get_next_state(screen, state, device)
if train:
reward = torch.tensor([score], device=device, dtype=torch.float)
# Reward for the agent
if not stop_game:
if score >= APPLE_PRIZE:
good_long_memory.push(state, action, next_state, reward)
else:
# Store the transition in memory
short_memory.push(state, action, next_state, reward)
else:
# Store the transition in memory
bad_long_memory.push(state, action, next_state, reward)
score = 0
# Move to the next state
state = next_state
# ----------------------------------------
# Perform one step of the optimization (on the target network)
if train and len(short_memory) > (BATCH_SIZE):
# Alternate a mode
if steps_done % 10_000 == 0:
# Decay learning rate
for param_group in optimizer.param_groups:
if param_group["lr"] > LEARNING_RATE:
param_group["lr"] = np.round(param_group["lr"] * 0.97, 10)
break
if steps_done % 5_000 == 0:
exploit = not exploit
transitions = []
for memory in [short_memory, good_long_memory, bad_long_memory]:
transitions += memory.sample(BATCH_SIZE)
size = len(transitions)
size = BATCH_SIZE if size > BATCH_SIZE else size
transitions = random.sample(transitions, size)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(
tuple(map(lambda s: s is not None, batch.next_state)), device=device
)
final_mask = 1 - non_final_mask
non_final_next_states = torch.cat(
[s for s in batch.next_state if s is not None]
)
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
expected_state_action_values = torch.zeros(BATCH_SIZE, device=device)
# Compute the expected Q values
expected_state_action_values[non_final_mask] = (
target_net(non_final_next_states).max(1)[0].detach() * GAMMA
+ reward_batch[non_final_mask].detach()
)
expected_state_action_values[final_mask] = reward_batch[final_mask].detach()
# Compute MSE loss
loss = F.mse_loss(
state_action_values, expected_state_action_values.unsqueeze(1)
)
# Compute Huber loss
# loss = F.smooth_l1_loss(
# state_action_values, expected_state_action_values.unsqueeze(1)
# )
vloss += [loss.item()]
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
# ----------------------------------------
# Routines of pygame
clock.tick(FPS)
if show_screen:
pyg.display.update()
if train and steps_done % TARGET_UPDATE == 0:
steps = (
f"{np.round(steps_done / 1000, 2)}k"
if steps_done > 1000
else steps_done
)
print("*" * 20)
print(f"Steps: {steps}, N Game: {n_game}")
print(f"Score:")
print(f" - mean: {np.round(np.mean(t_score), 5)}")
print(f" - median: {np.round(np.median(t_score), 5)}")
print(f" - max: {np.round(np.max(t_score), 5)}")
print(f"FPS: {np.round(clock.get_fps(), 2)}")
print(f"Running for: {np.round(time.time() - t_start_game, 2)} secs")
print(f"In training mode: {train}")
print(f"In exploit mode: {exploit}")
print(f"Batch: {BATCH_SIZE}")
print(f"Loss: {np.round(np.mean(vloss), 5)}")
print("Optimizer:", optimizer.__class__.__name__)
for param_group in optimizer.param_groups:
print(f"learning rate={param_group['lr']}")
break
print("Memories:")
print(" - short: ", len(memories["short"]))
print(" - good: ", len(memories["good"]))
print(" - bad: ", len(memories["bad"]))
print("Update target network...")
target_net.load_state_dict(policy_net.state_dict())
t_score, vloss = [1], [0]
if train and steps_done % MODEL_SAVE == 0:
memories = {
"short": short_memory,
"good": good_long_memory,
"bad": bad_long_memory,
}
save_model(md_name, policy_net, target_net, optimizer, memories)
# One step done in the whole game...
steps_done += 1