Skip to content

Latest commit

 

History

History

RemoteSensing

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R.LTWB

Obtención de series de datos discretos climatológicos satelitales y correlación con datos terrestres

Keywords: Remote-sensing CHIRPS Correlation Pearson Kendall Spearman Scatter-plot pandas rasterio requests tabulate

Para la validación o el contraste de información terrestre, se pueden obtener datos satelitales de precipitación diaria total, temperatura y evapotranspiración sobre las localizaciones específicas de la red climatológica utilizada. A partir de la información recopilada y validada para la red estaciones a usar en la zona de estudio y la conformación de series a partir de datos satelitales en las localizaciones específicas de la red, se correlacionan estos datos para evaluar si existe correspondencia y homogeneidad entre ellos.

CHIRPS permite descargar datos de precipitación diaria con resoluciones espaciales de 0.05 y 0.25 grados (5.5 y 27.8 km aprox.) en formatos BIL, TIDD o NetCDF y con series de 30 o más años. La banda de descarga se ubica entre las latitudes 50°S a -50°N en todas las longitudes de la superficie terrestre, iniciando su captura desde 1981 y hasta la actualidad. CHIRPS combina imágenes satelitales (NASA y NOAA) con datos registrados en estaciones terrestres y es frecuentemente utilizado para análisis de tendencias y monitoreo de sequías debidas a cambios estacionales. Esta fusión de datos permite estimar valores en zonas en las que no existen estaciones terrestres, complementando valores obtenidos por otros métodos que tienen en cuenta la relación espacial entre estaciones próximas.

Desde el año 1999, el Servicio Geológico de los Estados Unidos de América – USGS y los científicos del Grupo de Amenazas Climáticas - CHG, con el apoyo de la Agencia Internacional para el Desarrollo de los Estados Unidos – USAID, la NASA y la NOAA, han desarrollado técnicas para producir mapas de precipitación especialmente en zonas donde existen pocos datos. Estimar espacial y temporalmente las variaciones de la precipitación, es un aspecto importante para el monitoreo del medio ambiente y para mitigar las sequías.

Objetivos

  • Descargar grillas de precipitación mensual total usando el servicio CHIRPS - Climate hazards group infrared precipitation.
  • Realizar la lectura de los valores de precipitación CHIRPS, en las localizaciones de la red de estaciones terrestres utilizadas para la obtención de datos del IDEAM - Colombia.
  • Realizar análisis de correlación entre datos terrestres y datos obtenidos a partir de observaciones satelitales.

Requerimientos

Procedimiento general - Precipitación CHIRPS 1


R.LTWB
Convenciones generales en diagramas: clases de entidad en azul, dataset en gris oscuro, grillas en color verde, geo-procesos en rojo, procesos automáticos o semiautomáticos en guiones rojos y procesos manuales en amarillo. Líneas conectoras con guiones corresponden a procedimientos opcionales.

  1. Para la descarga, lectura y análisis de correlación, descargue el script ChirpsGetValue.py y guárdelo en la carpeta local D:\R.LTWB\.src de su equipo.

Funcionalidades del script

  • Descarga directa de archivos comprimidos de grillas CHIRPS de precipitación mensual total a partir de la definición de un rango de años, p.ej., entre 1981 y 2021.
  • Descompresión de grillas .tif.
  • Segmentación mensual por año del archivo integrado de registros discretos obtenidos del IDEAM para la Etiqueta = "PTPM_TT_M" correspondiente a datos de precipitación mensual total.
  • Lectura de valores CHIRPS por mes en cada año sobre las localizaciones específicas de la red de estaciones terrestres del IDEAM. Para cada mes en cada año, se crea un archivo .csv que contiene los valores IDEAM más los valores leídos CHIRPS, p.ej., chirps-v2.0.1981.01.csv.
  • Integración de archivos .csv en un único archivo, nombrado como IDEAMJoinedChirps.csv.
  • Para cada mes de cada año, se calculan correlaciones utilizando los métodos de Pearson, Kendal y Spearman y se genera el archivo IDEAMJoinedChirpsCorrelationDate.csv.
  • A partir de los valores de correlación estimados en cada mes para cada año, se calculan los valores promedio de las correlaciones y se genera el archivo IDEAMJoinedChirpsCorrelationDateMean.csv que contiene 3 valores.
  • A partir de los valores de correlación estimados en cada mes para cada año, se calculan los valores promedio de las correlaciones por año y se genera el archivo IDEAMJoinedChirpsCorrelationYear.csv que contiene 3 valores por cada año.
  • A partir de los valores de correlación estimados en cada mes para cada año, se calculan los valores promedio de las correlaciones por mes y se genera el archivo IDEAMJoinedChirpsCorrelationMonth.csv que contiene 3 valores para los 12 meses del año.
  • Generación de 6 gráficas de análisis con análisis de series de correlación y cajas de bigotes.
  • Generación de reporte científico integrado en formato Markdown, nombrado como RemoteSensingRainChirps.md

Atención: tenga en cuenta que para la correcta ejecución de este script, los valores almacenados en los campos fecha - hora deben mantener consistente el formato en todos los registros. Si la fecha de una columna específica está registrada en formato aaaa//mm/dd, todos los registros deben conservar el mismo formato.

Contenido del script ChirpsGetValue.py

# -*- coding: UTF-8 -*-
# Name: ChirpsGetValue.py
# Description: this script downloads the Chirps monthly rain geogrids and identify the specific values in the IDEAM - Colombia monthly stations series for calculate their correlations.
# Requirements: Python 3+, pandas, rasterio, requests, tabulate
# Attention: do not convert the .csv file into an Excel file because you would need process more than 1048576 records.

# Libraries
import os.path
import sys
import requests
import rasterio
from rasterio.plot import show
import pandas as pd
import gzip
import shutil
import glob
import matplotlib
import matplotlib.pyplot as plt
import tabulate  # required for print tables in Markdown using pandas
from datetime import datetime


# Function for get the raster value in a specific coordinate
def chirps_value(raster_file, longitude, latitude):
    raster = rasterio.open(path + raster_file)
    row, col = raster.index(longitude, latitude)
    return raster.read(1)[row, col]


# Function for print and show results in a file
def print_log(txt_print, on_screen=True, center_div=False):
    if on_screen:
        print(txt_print)
    if center_div:
        file_log.write('\n<div align="center">\n' + '\n')
    file_log.write(txt_print + '\n')
    if center_div:
        file_log.write('\n</div>\n' + '\n')


# General variables
station_file = 'D:/R.LTWB/.datasets/IDEAM/IDEAMJoined.csv'  # Current IDEAM records file
path = 'D:/R.LTWB/.datasets/CHIRPS/'  # Your local output path, use ../.datasets/CHIRPS/ for relative path
station_file_chirps = 'IDEAMJoinedChirps.csv'  # Output IDEAM records with the Chirps values
station_file_corr_date = 'IDEAMJoinedChirpsCorrelationDate.csv'  # Output IDEAM correlations with Chirps for each date
station_file_corr_date_mean = 'IDEAMJoinedChirpsCorrelationDateMean.csv'  # Output IDEAM correlations with Chirps - mean
station_file_corr_year = 'IDEAMJoinedChirpsCorrelationYear.csv'  # Output IDEAM correlations with Chirps for each year
station_file_corr_month = 'IDEAMJoinedChirpsCorrelationMonth.csv'  # Output IDEAM correlations with Chirps for each month
file_log_name = path + 'RemoteSensingRainChirps.md'
file_log = open(file_log_name, 'w+')   # w+ create the file if it doesn't exist
url_server = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/tifs/'
plot_raster = False  # Plot every geogrid
remove_temp_file_comp = True  # Remove all the compressed Chirps files downloaded after processing
remove_temp_file_geogrid = True  # Remove all the Chirps geogrid files after processing
remove_temp_file_csv = False  # Remove all .csv sliced files after processing
date_install = 'FechaInstalacion'  # IDEAM installation date field name
date_suspend = 'FechaSuspension'  # IDEAM suspension date field name
date_record = 'Fecha'  # IDEAM date field name for the record values
parameter_name = 'Etiqueta == "PTPM_TT_M"'  # IDEAM field name and specific monthly rain tag
latitude_name = 'Latitud'  # IDEAM latitude name
longitude_name = 'Longitud'  # IDEAM longitude name
value_name = 'Valor'  # IDEAM value field name
geogrid_extension = '.tif'
compress_format = '.gz'
plot_colormap = 'tab20b'  # Color theme for plot graphics, https://matplotlib.org/stable/tutorials/colors/colormaps.html
year_start = 1981  # Chirps values starts at 1981
year_end = 2021  # This value have to correspond with the end of the IDEAM series

# Header
print_log('## Obtención de series de datos discretos climatológicos satelitales y correlación con datos terrestres, IDEAM vs. CHIRPS')
print_log('\n* Archivo de resultados: ' + file_log_name +
          '\n* Fecha y hora de inicio de ejecución: ' + str(datetime.now()) +
          '\n* Python versión: ' + str(sys.version) +
          '\n* Python rutas: ' + str(sys.path[0:5]) +
          '\n* matplotlib versión: ' + str(matplotlib.__version__) +
          '\n* Encuentra este script en https://github.com/rcfdtools/R.LTWB/tree/main/Section03/RemoteSensing'
          '\n* Cláusulas y condiciones de uso en https://github.com/rcfdtools/R.LTWB/blob/main/LICENSE.md'
          '\n* Créditos: [email protected]\n')

# Open the IDEAM station dataframe and show general information
# Learn more about the IDEAM file in https://github.com/rcfdtools/R.LTWB/tree/main/Section03/CNEStationDatasetDownload
station_df = pd.read_csv(station_file, low_memory=False, parse_dates=[date_install, date_suspend, date_record])  # , infer_datetime_format=True
station_df[date_install] = pd.to_datetime(station_df[date_install], dayfirst=True, infer_datetime_format=True)  #, format='%d/%m/%Y'
station_df[date_suspend] = pd.to_datetime(station_df[date_suspend], dayfirst=True, infer_datetime_format=True)
station_df[date_record] = pd.to_datetime(station_df[date_record], dayfirst=False, infer_datetime_format=True)
print_log('\n### General dataframe information\n')
print(station_df.info())
print('\nStation records sample\n')
print(station_df)
ideam_regs = station_df.shape[0]
print_log('* IDEAM records: %s' % (str(ideam_regs)))
station_df = station_df.query(parameter_name)  # Filter for the monthly rain values
ideam_regs_query = station_df.shape[0]
print_log('* Filtered records for %s: %i (%s%%)' % (parameter_name, ideam_regs_query, str(round((ideam_regs_query/ideam_regs)*100, 2))))

# Processing Chrips values per month in each year (displayed only in Python console)
print('\n\n### Processing Chrips values per month in each year\n')
cols = ['Date', 'Year', 'Month', 'Pearson', 'Kendall', 'Spearman']
correlation_df = pd.DataFrame(columns=cols)
for year in range(year_start, year_end+1, 1):
    for month in range(12):
        year_month = str(year).zfill(4) + '-' + str(month+1).zfill(2)
        date = year_month + '-01'
        chirps_file = 'chirps-v2.0.' + str(year).zfill(4) + '.' + str(month+1).zfill(2)
        url_file = url_server + chirps_file + geogrid_extension + compress_format
        compress_file = path + chirps_file + geogrid_extension + compress_format
        print('\nProcessing geogrid %s from %s' % (year_month, url_file))
        # Request the compress geogrid Chirps file if the processed sliced .csv doesn't exist
        if os.path.isfile(compress_file) is False and os.path.isfile(path + chirps_file + '.csv') is False:
            print('Saving compressed file as %s' % compress_file)
            file_request = requests.get(url_file)
            if file_request:
                open(compress_file, 'wb').write(file_request.content)
        else:
            print('Compressed file %s is already in the directory.' % compress_file)
        # Uncompress the Chirps file if the geodrid and the processed sliced .csv doesn't exist
        if os.path.isfile(path + chirps_file + geogrid_extension) is False and os.path.isfile(path + chirps_file + '.csv') is False:
            with gzip.open(compress_file, 'rb') as f_in:
                with open(path + chirps_file + geogrid_extension, 'wb') as f_out:
                    shutil.copyfileobj(f_in, f_out)
                    print('Uncompressing geogrid as %s' % (path + chirps_file + geogrid_extension))
        else:
            print('Geogrid %s is already in the directory.' % (path + chirps_file + geogrid_extension))
        # Plot raster in screen if the geogrid file still
        if plot_raster and remove_temp_file_geogrid is False:
            raster = rasterio.open(path + chirps_file + geogrid_extension)
            # print(raster.crs)  # Print coordinate reference system - CRS
            # print(raster.count)  # Print number of bands
            show(raster)  # Plot the raster file
        # Slice the IDEAM file per year and month and get the Chirps values
        if os.path.isfile(path + chirps_file + '.csv') is False:
            #station_df_filter = station_df[station_df[date_record].dt.strftime('%Y-%m') == year_month]
            station_df_filter = station_df[station_df[date_record].dt.strftime('%Y-%m') == year_month]
            stations = station_df_filter.shape[0]
            print('Slicing .csv serie for %s with %d records' % (year_month, stations))
            station_df_filter['SatValue'] = chirps_value(chirps_file + geogrid_extension, station_df_filter[longitude_name], station_df_filter[latitude_name])
            station_df_filter['SatDesc'] = chirps_file + geogrid_extension
            station_df_filter.to_csv(path + chirps_file + '.csv')
        else:
            print('Sliced .csv serie %s with Chirps values is already in the directory.' % (path + chirps_file + '.csv'))
        # Correlation analysis
        df = pd.read_csv(path + chirps_file + '.csv', low_memory=False)
        correlation_pearson = df[value_name].corr(df['SatValue'], method='pearson')
        correlation_kendall = df[value_name].corr(df['SatValue'], method='kendall')
        correlation_spearman = df[value_name].corr(df['SatValue'], method='spearman')
        print('Correlation analysis. Pearson = %f, Kendall = %f, Spearman = %f' % (correlation_pearson, correlation_kendall, correlation_spearman))
        #df2 = pd.DataFrame([[pd.to_datetime(date, format='%Y/%m/%d'), year, month + 1, correlation_pearson, correlation_kendall, correlation_spearman]], columns=cols)
        df2 = pd.DataFrame([[pd.to_datetime(date, format='%Y-%m-%d'), year, month + 1, correlation_pearson, correlation_kendall, correlation_spearman]], columns=cols)
        # correlation_df = pd.concat([correlation_df, df2], ignore_index = True)
        correlation_df = pd.concat([correlation_df, df2])

# Join .csv files and plot
print_log('\n\n### General IDEAM vs. CHIRPS - Plots\n')
csv_files = glob.glob(path + 'chirps-v2.0.*.csv')
df = pd.concat(map(pd.read_csv, csv_files), ignore_index=True)
df.to_csv(path + station_file_chirps, encoding='utf-8', index=False)
df = pd.read_csv(path + station_file_chirps, low_memory=False)
print_log('\nProcessed .csv file [%s](%s)\n' % (station_file_chirps, station_file_chirps))
fig = df.plot.scatter(x=value_name, y='SatValue', alpha=0.75, figsize=(6, 6), c='black', cmap=None)
plt.title('IDEAM vs. CHIRPS - Scatter plot')
fig.figure.savefig(path + 'PlotDateScatterIdeamChirps.png')
plt.show()
print_log('![R.LTWB](PlotDateScatterIdeamChirps.png)', center_div=True)
fig = df.boxplot(column=[value_name, 'SatValue'], figsize=(6, 6), grid=False)
plt.title('IDEAM & CHIRPS - Boxplot')
fig.figure.savefig(path + 'PlotDateIdeamChirpsBoxplot.png')
print_log('![R.LTWB](PlotDateIdeamChirpsBoxplot.png)', center_div=True)
plt.show()

# Correlation save & plot
print_log('\n\n### Correlation Analysis\n\nThe correlation methods used for the analysis are:\n')
print_log('* [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient)  ')
print_log('* [Kendall rank correlation coefficient](https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient)  ')
print_log('* [Spearman’s rank correlation coefficient](https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient)  ')
correlation_df.to_csv(path + station_file_corr_date, encoding='utf-8', index=False)
correlation_df.set_index('Date', inplace=True)
print_log('\n\n#### Correlation values for the date records\n\nThe following table, shows the monthly average correlation values obtained from the IDEAM records and the correspondent Chirps values.\nGet the table [%s](%s) \n' % (station_file_corr_date, station_file_corr_date))
print_log(correlation_df.to_markdown(), center_div=True)
df = correlation_df.iloc[:, [2, 3, 4]].mean(axis=0)  # iloc for get only the required attributes
df.to_csv(path + station_file_corr_date_mean, encoding='utf-8', index=True)
fig = correlation_df.iloc[:, [2, 3, 4]].plot(figsize=(10, 6), rot=90, colormap=plot_colormap)
plt.title('IDEAM vs. CHIRPS - Correlations per date')
fig.figure.savefig(path + 'PlotDateCorrelationTimeSerie.png')
print_log('\n![R.LTWB](PlotDateCorrelationTimeSerie.png)')
print_log('\n\n#### Average correlations per method\n\nThe values shown below, correspond to the average correlation values in each date processed.\nGet the table [%s](%s) \n' % (station_file_corr_date_mean, station_file_corr_date_mean))
print_log(df.to_markdown(), center_div=True)
correlation_df.iloc[:, [2, 3, 4]].plot.box(figsize=(6, 6))
fig = plt.title('IDEAM vs. CHIRPS - Correlations boxplot')
fig.figure.savefig(path + 'PlotDateCorrelationBoxplot.png')
print_log('\n![R.LTWB](PlotDateCorrelationBoxplot.png)', center_div=True)
df = correlation_df.groupby('Year').mean()
df.to_csv(path + station_file_corr_year, encoding='utf-8', index=True)
print_log('\n\n#### Average yearly correlation and method\n\nThis table shows the average correlation values obtained for each method in every year in the record set.\nGet the table [%s](%s) \n' % (station_file_corr_year, station_file_corr_year))
print_log(df.to_markdown(), center_div=True)
fig = df.plot(figsize=(10, 6), rot=90, colormap=plot_colormap)
plt.title('IDEAM vs. CHIRPS - Correlations per year')
fig.figure.savefig(path + 'PlotYearCorrelationTimeSerie.png')
print_log('\n![R.LTWB](PlotYearCorrelationTimeSerie.png)')
df = correlation_df.groupby('Month').mean()
df.to_csv(path + station_file_corr_month, encoding='utf-8', index=True)
print_log('\n#### Average monthly correlation and method\n\nThis table shows the average correlation values obtained in every month in the record set.\nGet the table [%s](%s) \n' % (station_file_corr_month, station_file_corr_month))
print_log(df.to_markdown(), center_div=True)
fig = df.plot(figsize=(10, 6), rot=0, colormap=plot_colormap)
plt.title('IDEAM vs. CHIRPS - Correlations per month')
plt.xticks(range(1, 13, 1))
fig.figure.savefig(path + 'PlotMonthCorrelationTimeSerie.png')
print_log('\n![R.LTWB](PlotMonthCorrelationTimeSerie.png)')
plt.show()

# Remove temporal files
if remove_temp_file_comp:
    chirps_files = glob.glob(path + 'chirps-v2.0.*.gz')
    for chirps_file in chirps_files:
        os.remove(chirps_file)
if remove_temp_file_geogrid:
    geogrid_files = glob.glob(path + 'chirps-v2.0.*.tif')
    for geogrid_file in geogrid_files:
        os.remove(geogrid_file)
if remove_temp_file_csv:  # csv glob.glob created before
    for csv_file in csv_files:
        os.remove(csv_file)
print('\nProcess accomplished, check the results files like: %s' % (path + station_file_chirps))
  1. Cree una nueva carpeta en blanco con el nombre CHIRPS en su directorio de proyecto local D:\R.LTWB\.datasets. Dentro de la carpeta D:\R.LTWB\Section03\RemoteSensing\, cree una subcarpeta con el nombre Graph. Verifique que la carpeta D:\R.LTWB\.datasets\IDEAM, contenga el archivo IDEAMJoined.csv que fue procesado en la actividad denominada CNEStationDatasetDownload.

  2. En Microsoft Windows, ejecute el Command Prompt o CMD, ingrese D: y de Enter para cambiar a la unidad D:\ donde se encuentra el repositorio R.LTWB. Utilizando el comando CD D:\R.LTWB\.datasets\CHIRPS ubíquese dentro de la carpeta CHIRPS.

R.LTWB

  1. En él CMD, ejecute la instrucción C:\Python3.10.5\python.exe "D:\R.LTWB\.src\ChirpsGetValue.py" que realizará la descarga y procesamiento de los datos de precipitación de CHIRPS. Durante la ejecución, podrá observar que en la consola se presenta el detalle de los procesos ejecutados para los registros de estaciones de cada mes en cada año y la previsualización de las diferentes tablas y gráficas de análisis.

R.LTWB R.LTWB R.LTWB R.LTWB R.LTWB

Durante el proceso de ejecución del script, se genera automáticamente un reporte científico integrado de resultados en formato Markdown con el nombre D:\R.LTWB.datasets\CHIRPS\RemoteSensingRainChirps.md que contiene los siguientes resultados:

Resultados del análisis de precipitación mensual total IDEAM vs. CHIRPS

  • Archivo de resultados: D:/R.LTWB/.datasets/CHIRPS/RemoteSensingRainChirps.md
  • Fecha y hora de inicio de ejecución: 2022-10-23 08:19:23.420585
  • Python versión: 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)]
  • Python rutas: ['D:\R.LTWB\.src', 'C:\Python3.10.5\python310.zip', 'C:\Python3.10.5\DLLs', 'C:\Python3.10.5\lib', 'C:\Python3.10.5']
  • matplotlib versión: 3.6.0

General dataframe information

  • IDEAM records: 514927
  • Filtered records for Etiqueta == "PTPM_TT_M": 69603 (13.52%)

General IDEAM vs. CHIRPS - Plots

Processed .csv file IDEAMJoinedChirps.csv

R.LTWB

R.LTWB

Correlation Analysis

The correlation methods used for the analysis are:

Correlation values for the date records

The following table, shows the monthly average correlation values obtained from the IDEAM records and the correspondent CHIRPS values. Get the table IDEAMJoinedChirpsCorrelationDate.csv

Date Year Month Pearson Kendall Spearman
1981-01-01 00:00:00 1981 1 0.612058 0.282219 0.383146
1981-02-01 00:00:00 1981 2 0.808769 0.378524 0.522209
1981-03-01 00:00:00 1981 3 0.539775 0.400649 0.569205
1981-04-01 00:00:00 1981 4 0.808314 0.377949 0.531696
1981-05-01 00:00:00 1981 5 0.643781 0.45438 0.627324
1981-06-01 00:00:00 1981 6 0.688421 0.552399 0.734658
1981-07-01 00:00:00 1981 7 0.495693 0.518113 0.703578
1981-08-01 00:00:00 1981 8 0.671228 0.431941 0.590448
1981-09-01 00:00:00 1981 9 0.609723 0.389817 0.537805
1981-10-01 00:00:00 1981 10 0.586131 0.423803 0.596277
1981-11-01 00:00:00 1981 11 0.641861 0.476287 0.671685
1981-12-01 00:00:00 1981 12 0.647182 0.489283 0.65906
1982-01-01 00:00:00 1982 1 0.774137 0.570714 0.754119
1982-02-01 00:00:00 1982 2 0.644174 0.458109 0.640362
1982-03-01 00:00:00 1982 3 0.71613 0.572578 0.749782
1982-04-01 00:00:00 1982 4 0.70992 0.538742 0.716901
1982-05-01 00:00:00 1982 5 0.630528 0.426531 0.602797
1982-06-01 00:00:00 1982 6 0.508836 0.408061 0.590496
1982-07-01 00:00:00 1982 7 0.68605 0.457934 0.637591
1982-08-01 00:00:00 1982 8 0.649016 0.470221 0.641039
1982-09-01 00:00:00 1982 9 0.612098 0.356416 0.490405
1982-10-01 00:00:00 1982 10 0.774179 0.417979 0.581164
1982-11-01 00:00:00 1982 11 0.795591 0.483623 0.665238
1982-12-01 00:00:00 1982 12 0.935416 0.382682 0.503019
1983-01-01 00:00:00 1983 1 0.665475 0.24156 0.322341
1983-02-01 00:00:00 1983 2 0.527949 0.456305 0.592618
1983-03-01 00:00:00 1983 3 0.603798 0.489475 0.675917
1983-04-01 00:00:00 1983 4 0.694043 0.529692 0.712004
1983-05-01 00:00:00 1983 5 0.72913 0.604743 0.776147
1983-06-01 00:00:00 1983 6 0.72672 0.481779 0.661273
1983-07-01 00:00:00 1983 7 0.684421 0.365716 0.510268
1983-08-01 00:00:00 1983 8 0.754224 0.554741 0.732593
1983-09-01 00:00:00 1983 9 0.805387 0.592026 0.77741
1983-10-01 00:00:00 1983 10 0.630253 0.492188 0.676457
1983-11-01 00:00:00 1983 11 0.550808 0.411868 0.569796
1983-12-01 00:00:00 1983 12 0.60451 0.442048 0.6168
1984-01-01 00:00:00 1984 1 0.703276 0.467201 0.619773
1984-02-01 00:00:00 1984 2 0.346839 0.330128 0.4867
1984-03-01 00:00:00 1984 3 0.599954 0.48701 0.660373
1984-04-01 00:00:00 1984 4 0.773793 0.647765 0.831608
1984-05-01 00:00:00 1984 5 0.795266 0.538248 0.720341
1984-06-01 00:00:00 1984 6 0.699226 0.452794 0.620636
1984-07-01 00:00:00 1984 7 0.700787 0.463871 0.65488
1984-08-01 00:00:00 1984 8 0.794719 0.559449 0.758433
1984-09-01 00:00:00 1984 9 0.623824 0.430889 0.594237
1984-10-01 00:00:00 1984 10 0.693342 0.477892 0.642265
1984-11-01 00:00:00 1984 11 0.578909 0.48281 0.660115
1984-12-01 00:00:00 1984 12 0.651398 0.302424 0.385755
1985-01-01 00:00:00 1985 1 0.488746 0.405176 0.522471
1985-02-01 00:00:00 1985 2 0.635806 0.321056 0.416477
1985-03-01 00:00:00 1985 3 0.692804 0.534202 0.711781
1985-04-01 00:00:00 1985 4 0.594484 0.559128 0.739981
1985-05-01 00:00:00 1985 5 0.739281 0.492348 0.669182
1985-06-01 00:00:00 1985 6 0.625975 0.460868 0.645639
1985-07-01 00:00:00 1985 7 0.597452 0.358122 0.498039
1985-08-01 00:00:00 1985 8 0.776426 0.467046 0.638565
1985-09-01 00:00:00 1985 9 0.699464 0.417397 0.592547
1985-10-01 00:00:00 1985 10 0.717803 0.456283 0.627897
1985-11-01 00:00:00 1985 11 0.83466 0.468738 0.642226
1985-12-01 00:00:00 1985 12 0.833099 0.43697 0.605685
1986-01-01 00:00:00 1986 1 0.733781 0.329713 0.425532
1986-02-01 00:00:00 1986 2 0.417436 0.336475 0.487919
1986-03-01 00:00:00 1986 3 0.632095 0.507068 0.694976
1986-04-01 00:00:00 1986 4 0.799844 0.501621 0.672769
1986-05-01 00:00:00 1986 5 0.802564 0.614403 0.810932
1986-06-01 00:00:00 1986 6 0.615454 0.351303 0.502667
1986-07-01 00:00:00 1986 7 0.728537 0.464694 0.637048
1986-08-01 00:00:00 1986 8 0.687403 0.354998 0.488718
1986-09-01 00:00:00 1986 9 0.821828 0.509026 0.696896
1986-10-01 00:00:00 1986 10 0.720635 0.43199 0.605987
1986-11-01 00:00:00 1986 11 0.674264 0.356495 0.506092
1986-12-01 00:00:00 1986 12 0.729148 0.321366 0.446529
1987-01-01 00:00:00 1987 1 0.518886 0.305535 0.426745
1987-02-01 00:00:00 1987 2 0.305346 0.311934 0.442172
1987-03-01 00:00:00 1987 3 0.487254 0.442464 0.598201
1987-04-01 00:00:00 1987 4 0.656947 0.462388 0.634917
1987-05-01 00:00:00 1987 5 0.611737 0.416172 0.579122
1987-06-01 00:00:00 1987 6 0.718846 0.457015 0.629619
1987-07-01 00:00:00 1987 7 0.742986 0.392704 0.559629
1987-08-01 00:00:00 1987 8 0.837654 0.454 0.620948
1987-09-01 00:00:00 1987 9 0.685293 0.441497 0.599652
1987-10-01 00:00:00 1987 10 0.662518 0.457267 0.633838
1987-11-01 00:00:00 1987 11 0.820482 0.544815 0.722334
1987-12-01 00:00:00 1987 12 0.771382 0.455196 0.626507
1988-01-01 00:00:00 1988 1 0.401901 0.308269 0.377737
1988-02-01 00:00:00 1988 2 0.494672 0.379542 0.51565
1988-03-01 00:00:00 1988 3 0.766699 0.509115 0.65973
1988-04-01 00:00:00 1988 4 0.528855 0.36198 0.505979
1988-05-01 00:00:00 1988 5 0.456579 0.346691 0.489466
1988-06-01 00:00:00 1988 6 0.5616 0.339761 0.475122
1988-07-01 00:00:00 1988 7 0.551247 0.368784 0.51192
1988-08-01 00:00:00 1988 8 0.771229 0.550388 0.738351
1988-09-01 00:00:00 1988 9 0.708319 0.491151 0.670569
1988-10-01 00:00:00 1988 10 0.76466 0.496802 0.692301
1988-11-01 00:00:00 1988 11 0.733081 0.432356 0.611407
1988-12-01 00:00:00 1988 12 0.884582 0.606868 0.788617
1989-01-01 00:00:00 1989 1 0.765013 0.439401 0.553926
1989-02-01 00:00:00 1989 2 0.572073 0.446785 0.614623
1989-03-01 00:00:00 1989 3 0.636633 0.478612 0.642165
1989-04-01 00:00:00 1989 4 0.661843 0.489631 0.662125
1989-05-01 00:00:00 1989 5 0.769166 0.532754 0.714012
1989-06-01 00:00:00 1989 6 0.834254 0.532417 0.714423
1989-07-01 00:00:00 1989 7 0.82225 0.447267 0.607109
1989-08-01 00:00:00 1989 8 0.715435 0.508522 0.694358
1989-09-01 00:00:00 1989 9 0.761334 0.583143 0.756538
1989-10-01 00:00:00 1989 10 0.822943 0.470085 0.634433
1989-11-01 00:00:00 1989 11 0.793241 0.491555 0.663919
1989-12-01 00:00:00 1989 12 0.415336 0.343698 0.48893
1990-01-01 00:00:00 1990 1 0.949898 0.35012 0.440971
1990-02-01 00:00:00 1990 2 0.665387 0.411503 0.543279
1990-03-01 00:00:00 1990 3 0.81449 0.573598 0.755102
1990-04-01 00:00:00 1990 4 0.732254 0.551283 0.737486
1990-05-01 00:00:00 1990 5 0.685783 0.385938 0.545466
1990-06-01 00:00:00 1990 6 0.662761 0.450147 0.616051
1990-07-01 00:00:00 1990 7 0.770828 0.365082 0.508908
1990-08-01 00:00:00 1990 8 0.708579 0.468585 0.635076
1990-09-01 00:00:00 1990 9 0.72072 0.42716 0.600328
1990-10-01 00:00:00 1990 10 0.582037 0.396558 0.555771
1990-11-01 00:00:00 1990 11 0.81389 0.499032 0.684661
1990-12-01 00:00:00 1990 12 0.729745 0.488282 0.664802
1991-01-01 00:00:00 1991 1 0.776482 0.245452 0.307058
1991-02-01 00:00:00 1991 2 0.783911 0.361024 0.486838
1991-03-01 00:00:00 1991 3 0.604412 0.525286 0.696318
1991-04-01 00:00:00 1991 4 0.860527 0.556787 0.732087
1991-05-01 00:00:00 1991 5 0.804223 0.470712 0.63364
1991-06-01 00:00:00 1991 6 0.701146 0.417707 0.556104
1991-07-01 00:00:00 1991 7 0.720612 0.446038 0.619762
1991-08-01 00:00:00 1991 8 0.570461 0.25304 0.365589
1991-09-01 00:00:00 1991 9 0.687495 0.4419 0.613858
1991-10-01 00:00:00 1991 10 0.671376 0.466408 0.642418
1991-11-01 00:00:00 1991 11 0.83504 0.410277 0.555026
1991-12-01 00:00:00 1991 12 0.890222 0.397691 0.507564
1992-01-01 00:00:00 1992 1 0.504782 0.330327 0.441734
1992-02-01 00:00:00 1992 2 0.704688 0.441491 0.577433
1992-03-01 00:00:00 1992 3 0.518449 0.445418 0.608973
1992-04-01 00:00:00 1992 4 0.71175 0.440021 0.609573
1992-05-01 00:00:00 1992 5 0.790649 0.533506 0.709343
1992-06-01 00:00:00 1992 6 0.728636 0.542014 0.729545
1992-07-01 00:00:00 1992 7 0.724407 0.440018 0.605182
1992-08-01 00:00:00 1992 8 0.722114 0.470109 0.652991
1992-09-01 00:00:00 1992 9 0.680463 0.432109 0.6151
1992-10-01 00:00:00 1992 10 0.626425 0.495928 0.670354
1992-11-01 00:00:00 1992 11 0.818989 0.610594 0.802671
1992-12-01 00:00:00 1992 12 0.832356 0.460367 0.629215
1993-01-01 00:00:00 1993 1 0.63213 0.410253 0.568793
1993-02-01 00:00:00 1993 2 0.401512 0.404081 0.554146
1993-03-01 00:00:00 1993 3 0.748287 0.473544 0.636207
1993-04-01 00:00:00 1993 4 0.760026 0.498384 0.661623
1993-05-01 00:00:00 1993 5 0.61397 0.452096 0.614362
1993-06-01 00:00:00 1993 6 0.68335 0.445871 0.613565
1993-07-01 00:00:00 1993 7 0.686704 0.361518 0.51016
1993-08-01 00:00:00 1993 8 0.693199 0.435343 0.612356
1993-09-01 00:00:00 1993 9 0.737537 0.445794 0.610741
1993-10-01 00:00:00 1993 10 0.706175 0.381976 0.523018
1993-11-01 00:00:00 1993 11 0.853748 0.486714 0.656401
1993-12-01 00:00:00 1993 12 0.806019 0.484756 0.652424
1994-01-01 00:00:00 1994 1 0.478124 0.345874 0.45086
1994-02-01 00:00:00 1994 2 0.656187 0.51411 0.693328
1994-03-01 00:00:00 1994 3 0.683528 0.561825 0.740097
1994-04-01 00:00:00 1994 4 0.788554 0.569722 0.74691
1994-05-01 00:00:00 1994 5 0.743518 0.437366 0.604119
1994-06-01 00:00:00 1994 6 0.715697 0.481754 0.64269
1994-07-01 00:00:00 1994 7 0.884902 0.540581 0.720412
1994-08-01 00:00:00 1994 8 0.716336 0.438143 0.599986
1994-09-01 00:00:00 1994 9 0.575235 0.442741 0.621881
1994-10-01 00:00:00 1994 10 0.810031 0.523409 0.711881
1994-11-01 00:00:00 1994 11 0.87004 0.416391 0.588776
1994-12-01 00:00:00 1994 12 0.869152 0.509068 0.668436
1995-01-01 00:00:00 1995 1 0.421771 0.34404 0.444198
1995-02-01 00:00:00 1995 2 0.290628 0.254758 0.345397
1995-03-01 00:00:00 1995 3 0.769214 0.515049 0.679385
1995-04-01 00:00:00 1995 4 0.688668 0.395187 0.554973
1995-05-01 00:00:00 1995 5 0.694521 0.497543 0.670855
1995-06-01 00:00:00 1995 6 0.654819 0.495509 0.676535
1995-07-01 00:00:00 1995 7 0.679759 0.469661 0.636964
1995-08-01 00:00:00 1995 8 0.596455 0.477233 0.659062
1995-09-01 00:00:00 1995 9 0.738295 0.466662 0.634143
1995-10-01 00:00:00 1995 10 0.824304 0.594947 0.766799
1995-11-01 00:00:00 1995 11 0.777246 0.521621 0.697318
1995-12-01 00:00:00 1995 12 0.844204 0.528593 0.699155
1996-01-01 00:00:00 1996 1 0.630333 0.415458 0.565816
1996-02-01 00:00:00 1996 2 0.609415 0.431977 0.598356
1996-03-01 00:00:00 1996 3 0.668055 0.549808 0.732378
1996-04-01 00:00:00 1996 4 0.756006 0.42176 0.586827
1996-05-01 00:00:00 1996 5 0.641742 0.290231 0.400951
1996-06-01 00:00:00 1996 6 0.614275 0.434552 0.583628
1996-07-01 00:00:00 1996 7 0.575827 0.353093 0.492406
1996-08-01 00:00:00 1996 8 0.764897 0.504518 0.669675
1996-09-01 00:00:00 1996 9 0.727969 0.479382 0.650495
1996-10-01 00:00:00 1996 10 0.823677 0.489864 0.666789
1996-11-01 00:00:00 1996 11 0.716095 0.452582 0.625447
1996-12-01 00:00:00 1996 12 0.962944 0.483129 0.640817
1997-01-01 00:00:00 1997 1 0.844213 0.490192 0.645076
1997-02-01 00:00:00 1997 2 0.880127 0.434474 0.552278
1997-03-01 00:00:00 1997 3 0.552475 0.533542 0.699973
1997-04-01 00:00:00 1997 4 0.650535 0.519535 0.700194
1997-05-01 00:00:00 1997 5 0.750352 0.527255 0.683398
1997-06-01 00:00:00 1997 6 0.786564 0.470392 0.645563
1997-07-01 00:00:00 1997 7 0.717971 0.516667 0.710349
1997-08-01 00:00:00 1997 8 0.727493 0.446399 0.618208
1997-09-01 00:00:00 1997 9 0.726954 0.368227 0.513542
1997-10-01 00:00:00 1997 10 0.844451 0.471428 0.642856
1997-11-01 00:00:00 1997 11 0.650808 0.4207 0.559427
1997-12-01 00:00:00 1997 12 0.633663 0.427011 0.564723
1998-01-01 00:00:00 1998 1 0.450178 0.222843 0.291759
1998-02-01 00:00:00 1998 2 0.745154 0.44211 0.594577
1998-03-01 00:00:00 1998 3 0.542292 0.4661 0.642656
1998-04-01 00:00:00 1998 4 0.859498 0.494558 0.669107
1998-05-01 00:00:00 1998 5 0.68868 0.420054 0.57833
1998-06-01 00:00:00 1998 6 0.627155 0.352127 0.499255
1998-07-01 00:00:00 1998 7 0.722671 0.52814 0.710129
1998-08-01 00:00:00 1998 8 0.657937 0.43758 0.611132
1998-09-01 00:00:00 1998 9 0.607246 0.487909 0.664723
1998-10-01 00:00:00 1998 10 0.635692 0.411372 0.585066
1998-11-01 00:00:00 1998 11 0.807348 0.517551 0.683097
1998-12-01 00:00:00 1998 12 0.884989 0.496647 0.66575
1999-01-01 00:00:00 1999 1 0.720544 0.596692 0.761227
1999-02-01 00:00:00 1999 2 0.774642 0.487387 0.691569
1999-03-01 00:00:00 1999 3 0.648219 0.52767 0.718096
1999-04-01 00:00:00 1999 4 0.688904 0.491552 0.663338
1999-05-01 00:00:00 1999 5 0.60313 0.474502 0.643408
1999-06-01 00:00:00 1999 6 0.644271 0.450623 0.632611
1999-07-01 00:00:00 1999 7 0.716489 0.521354 0.71087
1999-08-01 00:00:00 1999 8 0.438784 0.396256 0.551317
1999-09-01 00:00:00 1999 9 0.535081 0.424232 0.595874
1999-10-01 00:00:00 1999 10 0.684105 0.532494 0.70259
1999-11-01 00:00:00 1999 11 0.527076 0.41239 0.558573
1999-12-01 00:00:00 1999 12 0.875243 0.403543 0.554844
2000-01-01 00:00:00 2000 1 0.675203 0.382908 0.527618
2000-02-01 00:00:00 2000 2 0.90952 0.502114 0.684508
2000-03-01 00:00:00 2000 3 0.829564 0.568528 0.735972
2000-04-01 00:00:00 2000 4 0.610903 0.5142 0.706957
2000-05-01 00:00:00 2000 5 0.656033 0.502854 0.678942
2000-06-01 00:00:00 2000 6 0.733829 0.52733 0.710272
2000-07-01 00:00:00 2000 7 0.659653 0.445326 0.616425
2000-08-01 00:00:00 2000 8 0.651259 0.478336 0.665369
2000-09-01 00:00:00 2000 9 0.660458 0.529973 0.722265
2000-10-01 00:00:00 2000 10 0.731057 0.537327 0.723003
2000-11-01 00:00:00 2000 11 0.753406 0.58711 0.790455
2000-12-01 00:00:00 2000 12 0.641708 0.416232 0.573785
2001-01-01 00:00:00 2001 1 0.387503 0.307371 0.385734
2001-02-01 00:00:00 2001 2 0.523137 0.272272 0.340436
2001-03-01 00:00:00 2001 3 0.548027 0.511773 0.68219
2001-04-01 00:00:00 2001 4 0.569129 0.511511 0.675592
2001-05-01 00:00:00 2001 5 0.708522 0.513645 0.707593
2001-06-01 00:00:00 2001 6 0.640188 0.477459 0.664513
2001-07-01 00:00:00 2001 7 0.643413 0.412871 0.579972
2001-08-01 00:00:00 2001 8 0.639037 0.392568 0.54897
2001-09-01 00:00:00 2001 9 0.701943 0.453082 0.620898
2001-10-01 00:00:00 2001 10 0.611718 0.460986 0.632925
2001-11-01 00:00:00 2001 11 0.822868 0.549965 0.733715
2001-12-01 00:00:00 2001 12 0.852402 0.512093 0.668945
2002-01-01 00:00:00 2002 1 0.759308 0.45527 0.560717
2002-02-01 00:00:00 2002 2 0.787637 0.532488 0.681192
2002-03-01 00:00:00 2002 3 0.7955 0.507256 0.676584
2002-04-01 00:00:00 2002 4 0.844043 0.540159 0.732437
2002-05-01 00:00:00 2002 5 0.763381 0.455412 0.618601
2002-06-01 00:00:00 2002 6 0.727392 0.547125 0.742635
2002-07-01 00:00:00 2002 7 0.607905 0.34573 0.481351
2002-08-01 00:00:00 2002 8 0.465199 0.334605 0.476087
2002-09-01 00:00:00 2002 9 0.531921 0.414349 0.573628
2002-10-01 00:00:00 2002 10 0.707212 0.523313 0.707218
2002-11-01 00:00:00 2002 11 0.745463 0.402559 0.562468
2002-12-01 00:00:00 2002 12 0.342911 0.182286 0.253838
2003-01-01 00:00:00 2003 1 0.591989 0.359627 0.450194
2003-02-01 00:00:00 2003 2 0.53225 0.447312 0.577403
2003-03-01 00:00:00 2003 3 0.538609 0.463753 0.626168
2003-04-01 00:00:00 2003 4 0.616448 0.425757 0.578369
2003-05-01 00:00:00 2003 5 0.592451 0.392092 0.518069
2003-06-01 00:00:00 2003 6 0.658468 0.531049 0.71553
2003-07-01 00:00:00 2003 7 0.642935 0.464661 0.619013
2003-08-01 00:00:00 2003 8 0.628367 0.434462 0.603248
2003-09-01 00:00:00 2003 9 0.70104 0.553425 0.741784
2003-10-01 00:00:00 2003 10 0.54086 0.440565 0.61076
2003-11-01 00:00:00 2003 11 0.608547 0.375855 0.52797
2003-12-01 00:00:00 2003 12 0.674638 0.424366 0.590572
2004-01-01 00:00:00 2004 1 0.584864 0.317559 0.41584
2004-02-01 00:00:00 2004 2 0.405823 0.482006 0.632094
2004-03-01 00:00:00 2004 3 0.675883 0.58916 0.763641
2004-04-01 00:00:00 2004 4 0.787225 0.547558 0.725924
2004-05-01 00:00:00 2004 5 0.819884 0.475249 0.640409
2004-06-01 00:00:00 2004 6 0.581799 0.368793 0.515354
2004-07-01 00:00:00 2004 7 0.572282 0.38793 0.539984
2004-08-01 00:00:00 2004 8 0.687835 0.368826 0.51636
2004-09-01 00:00:00 2004 9 0.565788 0.350164 0.498991
2004-10-01 00:00:00 2004 10 0.806276 0.525116 0.701564
2004-11-01 00:00:00 2004 11 0.659081 0.349478 0.486526
2004-12-01 00:00:00 2004 12 0.819109 0.578401 0.733723
2005-01-01 00:00:00 2005 1 0.828806 0.545906 0.708626
2005-02-01 00:00:00 2005 2 0.664031 0.532248 0.71063
2005-03-01 00:00:00 2005 3 0.662458 0.544412 0.731437
2005-04-01 00:00:00 2005 4 0.752153 0.509313 0.680948
2005-05-01 00:00:00 2005 5 0.723379 0.498101 0.658098
2005-06-01 00:00:00 2005 6 0.682411 0.417689 0.575387
2005-07-01 00:00:00 2005 7 0.453912 0.304503 0.43842
2005-08-01 00:00:00 2005 8 0.654151 0.43112 0.601214
2005-09-01 00:00:00 2005 9 0.608523 0.461849 0.65485
2005-10-01 00:00:00 2005 10 0.796556 0.586955 0.77083
2005-11-01 00:00:00 2005 11 0.768298 0.545535 0.734988
2005-12-01 00:00:00 2005 12 0.772221 0.438518 0.590113
2006-01-01 00:00:00 2006 1 0.716326 0.521011 0.69309
2006-02-01 00:00:00 2006 2 0.273905 0.374441 0.501875
2006-03-01 00:00:00 2006 3 0.708128 0.58612 0.76812
2006-04-01 00:00:00 2006 4 0.739043 0.612467 0.800348
2006-05-01 00:00:00 2006 5 0.713791 0.490519 0.67402
2006-06-01 00:00:00 2006 6 0.488415 0.315236 0.460454
2006-07-01 00:00:00 2006 7 0.496998 0.382648 0.53615
2006-08-01 00:00:00 2006 8 0.501048 0.416868 0.584234
2006-09-01 00:00:00 2006 9 0.672591 0.430708 0.59544
2006-10-01 00:00:00 2006 10 0.760279 0.476165 0.660496
2006-11-01 00:00:00 2006 11 0.70232 0.39002 0.539005
2006-12-01 00:00:00 2006 12 0.747422 0.43257 0.600399
2007-01-01 00:00:00 2007 1 0.791345 0.140251 0.180015
2007-02-01 00:00:00 2007 2 0.537122 0.406642 0.532443
2007-03-01 00:00:00 2007 3 0.709219 0.51597 0.69981
2007-04-01 00:00:00 2007 4 0.687407 0.460963 0.642047
2007-05-01 00:00:00 2007 5 0.656411 0.442481 0.607694
2007-06-01 00:00:00 2007 6 0.575299 0.319003 0.4573
2007-07-01 00:00:00 2007 7 0.676161 0.522524 0.686086
2007-08-01 00:00:00 2007 8 0.642877 0.476246 0.65002
2007-09-01 00:00:00 2007 9 0.580575 0.43429 0.600848
2007-10-01 00:00:00 2007 10 0.64072 0.492587 0.649002
2007-11-01 00:00:00 2007 11 0.657051 0.347693 0.495809
2007-12-01 00:00:00 2007 12 0.914392 0.537073 0.712266
2008-01-01 00:00:00 2008 1 0.714356 0.480858 0.602596
2008-02-01 00:00:00 2008 2 0.772238 0.516013 0.682774
2008-03-01 00:00:00 2008 3 0.670054 0.547636 0.735196
2008-04-01 00:00:00 2008 4 0.738211 0.513624 0.685999
2008-05-01 00:00:00 2008 5 0.754173 0.518209 0.686474
2008-06-01 00:00:00 2008 6 0.682412 0.409455 0.581233
2008-07-01 00:00:00 2008 7 0.669913 0.428906 0.601516
2008-08-01 00:00:00 2008 8 0.673397 0.472985 0.651923
2008-09-01 00:00:00 2008 9 0.673355 0.491285 0.68109
2008-10-01 00:00:00 2008 10 0.677184 0.459983 0.633231
2008-11-01 00:00:00 2008 11 0.669105 0.409257 0.573469
2008-12-01 00:00:00 2008 12 0.567983 0.512906 0.678252
2009-01-01 00:00:00 2009 1 0.609333 0.423242 0.57377
2009-02-01 00:00:00 2009 2 0.827019 0.269238 0.357818
2009-03-01 00:00:00 2009 3 0.820737 0.615038 0.789561
2009-04-01 00:00:00 2009 4 0.798052 0.639287 0.81045
2009-05-01 00:00:00 2009 5 0.733001 0.429809 0.601411
2009-06-01 00:00:00 2009 6 0.578139 0.397017 0.562861
2009-07-01 00:00:00 2009 7 0.746881 0.394591 0.548057
2009-08-01 00:00:00 2009 8 0.656939 0.394454 0.540795
2009-09-01 00:00:00 2009 9 0.679189 0.402984 0.551845
2009-10-01 00:00:00 2009 10 0.652365 0.421434 0.594925
2009-11-01 00:00:00 2009 11 0.583653 0.390773 0.536701
2009-12-01 00:00:00 2009 12 0.639453 0.386426 0.53576
2010-01-01 00:00:00 2010 1 0.00408852 0.114963 0.145435
2010-02-01 00:00:00 2010 2 0.372217 0.399682 0.568576
2010-03-01 00:00:00 2010 3 0.560785 0.387724 0.542961
2010-04-01 00:00:00 2010 4 0.663673 0.317138 0.469267
2010-05-01 00:00:00 2010 5 0.63067 0.436126 0.579533
2010-06-01 00:00:00 2010 6 0.660678 0.454842 0.632635
2010-07-01 00:00:00 2010 7 0.638788 0.47464 0.65564
2010-08-01 00:00:00 2010 8 0.526662 0.405191 0.567096
2010-09-01 00:00:00 2010 9 0.641334 0.458212 0.641255
2010-10-01 00:00:00 2010 10 0.62896 0.461829 0.622605
2010-11-01 00:00:00 2010 11 0.756064 0.571506 0.763323
2010-12-01 00:00:00 2010 12 0.718266 0.451311 0.605804
2011-01-01 00:00:00 2011 1 0.28446 0.461286 0.616807
2011-02-01 00:00:00 2011 2 0.779287 0.460147 0.635964
2011-03-01 00:00:00 2011 3 0.56763 0.454265 0.620128
2011-04-01 00:00:00 2011 4 0.828787 0.67829 0.853732
2011-05-01 00:00:00 2011 5 0.63612 0.483543 0.653853
2011-06-01 00:00:00 2011 6 0.636367 0.448447 0.63395
2011-07-01 00:00:00 2011 7 0.472576 0.428807 0.597468
2011-08-01 00:00:00 2011 8 0.540888 0.408805 0.582813
2011-09-01 00:00:00 2011 9 0.556029 0.412377 0.575249
2011-10-01 00:00:00 2011 10 0.620834 0.465351 0.632568
2011-11-01 00:00:00 2011 11 0.67976 0.444555 0.616394
2011-12-01 00:00:00 2011 12 0.7493 0.456404 0.62975
2012-01-01 00:00:00 2012 1 0.691602 0.474192 0.590327
2012-02-01 00:00:00 2012 2 0.797643 0.495612 0.641643
2012-03-01 00:00:00 2012 3 0.850767 0.59663 0.771738
2012-04-01 00:00:00 2012 4 0.800804 0.590615 0.774618
2012-05-01 00:00:00 2012 5 0.440817 0.355042 0.495638
2012-06-01 00:00:00 2012 6 0.52089 0.428129 0.617037
2012-07-01 00:00:00 2012 7 0.604635 0.432666 0.609772
2012-08-01 00:00:00 2012 8 0.633807 0.473348 0.65687
2012-09-01 00:00:00 2012 9 0.599548 0.416439 0.584445
2012-10-01 00:00:00 2012 10 0.583431 0.461876 0.660022
2012-11-01 00:00:00 2012 11 0.693271 0.428615 0.597416
2012-12-01 00:00:00 2012 12 0.759241 0.565813 0.737312
2013-01-01 00:00:00 2013 1 0.281355 0.245968 0.30427
2013-02-01 00:00:00 2013 2 0.291143 0.340506 0.485853
2013-03-01 00:00:00 2013 3 0.634031 0.555407 0.752386
2013-04-01 00:00:00 2013 4 0.65835 0.567745 0.75323
2013-05-01 00:00:00 2013 5 0.750027 0.512956 0.689948
2013-06-01 00:00:00 2013 6 0.485205 0.385702 0.533675
2013-07-01 00:00:00 2013 7 0.581357 0.370342 0.508034
2013-08-01 00:00:00 2013 8 0.74024 0.551764 0.732503
2013-09-01 00:00:00 2013 9 0.714735 0.528413 0.707523
2013-10-01 00:00:00 2013 10 0.666992 0.468431 0.645082
2013-11-01 00:00:00 2013 11 0.816854 0.494946 0.659182
2013-12-01 00:00:00 2013 12 0.828207 0.62044 0.801774
2014-01-01 00:00:00 2014 1 0.506077 0.458606 0.606577
2014-02-01 00:00:00 2014 2 0.540584 0.445735 0.603514
2014-03-01 00:00:00 2014 3 0.583536 0.517943 0.694143
2014-04-01 00:00:00 2014 4 0.474498 0.38975 0.530169
2014-05-01 00:00:00 2014 5 0.626314 0.434524 0.610786
2014-06-01 00:00:00 2014 6 0.119051 0.0708604 0.0958695
2014-07-01 00:00:00 2014 7 0.0415518 0.0152779 0.0248425
2014-08-01 00:00:00 2014 8 0.377705 0.214143 0.304601
2014-09-01 00:00:00 2014 9 0.252189 0.10767 0.163646
2014-10-01 00:00:00 2014 10 0.470251 0.321469 0.491359
2014-11-01 00:00:00 2014 11 0.455694 0.385248 0.540489
2014-12-01 00:00:00 2014 12 0.308629 0.229434 0.324164
2015-01-01 00:00:00 2015 1 0.249946 -0.0154679 -0.0195618
2015-02-01 00:00:00 2015 2 0.581023 0.445228 0.608193
2015-03-01 00:00:00 2015 3 0.271012 0.484298 0.685415
2015-04-01 00:00:00 2015 4 0.251294 0.223172 0.335489
2015-05-01 00:00:00 2015 5 0.36231 0.288798 0.41566
2015-06-01 00:00:00 2015 6 0.201967 0.147981 0.218256
2015-07-01 00:00:00 2015 7 0.358108 0.193392 0.284694
2015-08-01 00:00:00 2015 8 0.368403 0.281194 0.400049
2015-09-01 00:00:00 2015 9 0.0667572 0.082961 0.120218
2015-10-01 00:00:00 2015 10 0.48689 0.30801 0.428979
2015-11-01 00:00:00 2015 11 0.498597 0.201927 0.289052
2015-12-01 00:00:00 2015 12 0.474719 0.165457 0.223821
2016-01-01 00:00:00 2016 1 0.146072 0.105635 0.141231
2016-02-01 00:00:00 2016 2 0.361717 0.299697 0.399486
2016-03-01 00:00:00 2016 3 0.342631 0.304381 0.428085
2016-04-01 00:00:00 2016 4 0.429708 0.31078 0.423981
2016-05-01 00:00:00 2016 5 0.444559 0.259401 0.379042
2016-06-01 00:00:00 2016 6 0.333509 0.247415 0.359475
2016-07-01 00:00:00 2016 7 0.505867 0.292487 0.425945
2016-08-01 00:00:00 2016 8 0.570064 0.413147 0.574427
2016-09-01 00:00:00 2016 9 0.454328 0.332538 0.486366
2016-10-01 00:00:00 2016 10 0.473113 0.409051 0.547146
2016-11-01 00:00:00 2016 11 0.624592 0.497739 0.693197
2016-12-01 00:00:00 2016 12 0.685437 0.487183 0.656253
2017-01-01 00:00:00 2017 1 0.718272 0.159715 0.211359
2017-02-01 00:00:00 2017 2 0.403057 0.177263 0.241979
2017-03-01 00:00:00 2017 3 0.628844 0.444864 0.595388
2017-04-01 00:00:00 2017 4 0.583575 0.283389 0.412926
2017-05-01 00:00:00 2017 5 0.473963 0.212074 0.306337
2017-06-01 00:00:00 2017 6 0.381841 0.31133 0.461404
2017-07-01 00:00:00 2017 7 0.202616 0.164892 0.263217
2017-08-01 00:00:00 2017 8 0.580356 0.414853 0.572272
2017-09-01 00:00:00 2017 9 0.407914 0.316274 0.44466
2017-10-01 00:00:00 2017 10 0.342383 0.227909 0.3396
2017-11-01 00:00:00 2017 11 0.397926 0.244965 0.346889
2017-12-01 00:00:00 2017 12 0.474661 0.426832 0.575854
2018-01-01 00:00:00 2018 1 0.357488 0.251639 0.338708
2018-02-01 00:00:00 2018 2 0.589456 0.0598689 0.0849494
2018-03-01 00:00:00 2018 3 0.512859 0.308461 0.43661
2018-04-01 00:00:00 2018 4 0.415993 0.285607 0.408119
2018-05-01 00:00:00 2018 5 0.331704 0.233192 0.332332
2018-06-01 00:00:00 2018 6 0.365834 0.280107 0.410734
2018-07-01 00:00:00 2018 7 0.318405 0.282568 0.415399
2018-08-01 00:00:00 2018 8 0.513883 0.36253 0.531865
2018-09-01 00:00:00 2018 9 0.428194 0.288788 0.41911
2018-10-01 00:00:00 2018 10 0.578641 0.387952 0.560485
2018-11-01 00:00:00 2018 11 0.63635 0.340611 0.490507
2018-12-01 00:00:00 2018 12 0.24116 0.0940691 0.120331
2019-01-01 00:00:00 2019 1 0.335199 0.303435 0.424376
2019-02-01 00:00:00 2019 2 0.00454535 0.221041 0.30082
2019-03-01 00:00:00 2019 3 0.657212 0.591263 0.779523
2019-04-01 00:00:00 2019 4 0.538835 0.238328 0.336366
2019-05-01 00:00:00 2019 5 0.473454 0.307928 0.427628
2019-06-01 00:00:00 2019 6 0.304595 0.243178 0.366383
2019-07-01 00:00:00 2019 7 0.329229 0.283461 0.408716
2019-08-01 00:00:00 2019 8 0.172448 0.205273 0.29102
2019-09-01 00:00:00 2019 9 0.188766 0.147484 0.21177
2019-10-01 00:00:00 2019 10 0.419301 0.278028 0.417699
2019-11-01 00:00:00 2019 11 0.470149 0.441572 0.607997
2019-12-01 00:00:00 2019 12 0.50841 0.413844 0.556981
2020-01-01 00:00:00 2020 1 0.477407 0.363899 0.498484
2020-02-01 00:00:00 2020 2 0.330905 0.42126 0.556288
2020-03-01 00:00:00 2020 3 0.31138 0.443959 0.592622
2020-04-01 00:00:00 2020 4 0.379751 0.280442 0.392357
2020-05-01 00:00:00 2020 5 0.405277 0.321466 0.44775
2020-06-01 00:00:00 2020 6 0.300411 0.23695 0.333389
2020-07-01 00:00:00 2020 7 0.582328 0.398011 0.569045
2020-08-01 00:00:00 2020 8 0.550445 0.411359 0.598834
2020-09-01 00:00:00 2020 9 0.576424 0.414181 0.609336
2020-10-01 00:00:00 2020 10 0.501594 0.369041 0.531319
2020-11-01 00:00:00 2020 11 0.398955 0.331139 0.479983
2020-12-01 00:00:00 2020 12 0.651758 0.392057 0.539636
2021-01-01 00:00:00 2021 1 0.712238 0.347116 0.45007
2021-02-01 00:00:00 2021 2 0.295655 0.317158 0.444964
2021-03-01 00:00:00 2021 3 0.433052 0.263416 0.374493
2021-04-01 00:00:00 2021 4 0.547263 0.35799 0.489321
2021-05-01 00:00:00 2021 5 0.395312 0.264118 0.398981
2021-06-01 00:00:00 2021 6 0.186817 0.0452113 0.0486043
2021-07-01 00:00:00 2021 7 0.472043 0.261918 0.387846
2021-08-01 00:00:00 2021 8 0.416536 0.355568 0.527069
2021-09-01 00:00:00 2021 9 0.523481 0.402299 0.577946
2021-10-01 00:00:00 2021 10 0.286252 0.154729 0.226714
2021-11-01 00:00:00 2021 11 0.735614 0.453125 0.631615
2021-12-01 00:00:00 2021 12 0.546456 0.398528 0.564

R.LTWB

Average correlations per method

The values shown below, correspond to the average correlation values in each date processed. Get the table IDEAMJoinedChirpsCorrelationDateMean.csv

0
Pearson 0.625075
Kendall 0.423064
Spearman 0.576582

R.LTWB

Average yearly correlation and method

This table shows the average correlation values obtained for each method in every year in the record set. Get the table IDEAMJoinedChirpsCorrelationYear.csv

Year Pearson Kendall Spearman
1981 0.646078 0.43128 0.593924
1982 0.703006 0.461966 0.631076
1983 0.664727 0.471845 0.635302
1984 0.663444 0.47004 0.63626
1985 0.686333 0.448111 0.609207
1986 0.696916 0.423262 0.581339
1987 0.651611 0.428416 0.589474
1988 0.635285 0.432642 0.586404
1989 0.714127 0.480322 0.645547
1990 0.736364 0.447274 0.607325
1991 0.742159 0.416027 0.559688
1992 0.696976 0.470159 0.637676
1993 0.693555 0.440028 0.60115
1994 0.732609 0.481749 0.649115
1995 0.66499 0.4634 0.622065
1996 0.707603 0.442196 0.601132
1997 0.730467 0.468818 0.627966
1998 0.685737 0.439749 0.599632
1999 0.654707 0.476558 0.648693
2000 0.709383 0.499353 0.677964
2001 0.637324 0.447966 0.603457
2002 0.673156 0.436713 0.588896
2003 0.61055 0.442744 0.59659
2004 0.663821 0.44502 0.597534
2005 0.697242 0.484679 0.654628
2006 0.626689 0.452398 0.617803
2007 0.672382 0.424644 0.576112
2008 0.688532 0.480093 0.649479
2009 0.69373 0.430358 0.583663
2010 0.566849 0.411097 0.566178
2011 0.61267 0.466856 0.637389
2012 0.664705 0.476581 0.644737
2013 0.620708 0.470218 0.631122
2014 0.39634 0.299222 0.415847
2015 0.347586 0.233912 0.332522
2016 0.447633 0.329955 0.459553
2017 0.466284 0.28203 0.397657
2018 0.440831 0.264616 0.379096
2019 0.366845 0.306236 0.42744
2020 0.455553 0.365314 0.51242
2021 0.46256 0.301765 0.426802

R.LTWB

Average monthly correlation and method

This table shows the average correlation values obtained in every month in the record set. Get the table IDEAMJoinedChirpsCorrelationMonth.csv

Month Pearson Kendall Spearman
1 0.573048 0.348927 0.456331
2 0.557186 0.390725 0.527545
3 0.622841 0.497446 0.667158
4 0.669266 0.468433 0.631433
5 0.641126 0.432756 0.590292
6 0.576671 0.394815 0.547976
7 0.597248 0.39189 0.544946
8 0.620613 0.423809 0.586744
9 0.606082 0.41603 0.576095
10 0.647893 0.442117 0.608432
11 0.688458 0.44099 0.605399
12 0.700465 0.428826 0.576633

R.LTWB

En este momento, dispone de registros IDEAM de precipitación con el registro de valores CHIRPS y diferentes análisis de correlación.

Actividades complementarias:pencil2:

En la siguiente tabla se listan las actividades complementarias que deben ser desarrolladas y documentadas por el estudiante en un único archivo de Adobe Acrobat .pdf. El documento debe incluir portada (mostrar nombre completo, código y enlace a su cuenta de GitHub), numeración de páginas, tabla de contenido, lista de tablas, lista de ilustraciones, introducción, objetivo general, capítulos por cada ítem solicitado, conclusiones y referencias bibliográficas.

Actividad Alcance
1 Investigue y documente servicios en Internet desde los cuales se puedan obtener datos satelitales de temperatura media diaria y evaporación total diaria.
2 Cree scripts en Python que permitan descargar, leer los valores de temperatura y evaporación satelitales en las localizaciones de la red de estaciones IDEAM utilizadas en este curso y que permita realizar análisis de correlación como los presentados en esta actividad.
3 Analice los resultados de las correlaciones e indique si a partir de los datos obtenidos satelitalmente, se pueden obtener valores precisos para la realización de balances hidrológicos de largo plazo.

Referencias

Control de versiones

Versión Descripción Autor Horas
2023.09.01 Actualización de script para compatibilidad con Python 3.11.5 y Pandas 2.1.1. rcfdtools 2.0
2023.02.08 Guión, audio, video, edición y publicación. rcfdtools 2.5
2022.10.23 Documentación y procedimiento general. Diagrama de procesos. rcfdtools 6
2022.10.06 Análisis de correlación para cada mes. Promedio de correlaciones. Gráficas de análisis. Pruebas manuales de escritorio a partir de lectura en ArcGIS para verificar obtención correcta de valores mediante script. Exportación de gráficas a .png. rcfdtools 8
2022.10.05 Descarga automática de archivos CHIRPS desde https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/tifs/. Lectura automática de valores mensuales por estación en cada localización específica utilizando rasterio. Incluye las columnas SatValue y SatDesc que contienen el valor obtenido y el nombre del archivo chirps utilizado. Generación de series segmentadas por año y mes en formato .csv para cada imagen satelital a partir de archivo a partir de archivo IDEAMJoined.csv. Integración de series obtenidas con resultados obtenidos en archivo IDEAMJoinedChirps.csv. Tiempo aproximado de ejecución para 514926 registros en 41 años (1981 a 2021) y 492 meses: 00:25:45. rcfdtools 8
2022.10.03 Inicio Script Python procesamiento series y descarga datos precipitación CHIRPS D:\R.LTWB.src\ChirpsGetValue.py. Segmentación de series de precipitación para registros IDEAM en slices por año y mes a partir de archivo IDEAMJoined.csv. rcfdtools 8

R.LTWB es de uso libre para fines académicos, conoce nuestra licencia, cláusulas, condiciones de uso y como referenciar los contenidos publicados en este repositorio, dando clic aquí.

¡Encontraste útil este repositorio!, apoya su difusión marcando este repositorio con una ⭐ o síguenos dando clic en el botón Follow de rcfdtools en GitHub.

Actividad anterior Inicio 🔰 Ayuda Actividad siguiente
R.LTWB
Este curso guía, ha sido desarrollado con el apoyo de la Escuela Colombiana de Ingeniería - Julio Garavito. Encuentra más contenidos en https://github.com/uescuelaing


Footnotes

  1. https://www.chc.ucsb.edu/data/chirps