-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathEx991.m
197 lines (148 loc) · 7.38 KB
/
Ex991.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
%----------------------------------------------------------------------------
% Example 9.9.1
% axisymmetric analysis of a solid subjected to an internal
% pressure using linear triangular elements
% (see Fig. 9.9.1 for the finite element mesh)
%
% Variable descriptions
% k = element matrix
% f = element vector
% kk = system matrix
% ff = system vector
% disp = system nodal displacement vector
% eldisp = element nodal displacement vector
% stress = matrix containing stresses
% strain = matrix containing strains
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in 'bcdof'
%----------------------------------------------------------------------------
%------------------------------------
% input data for control parameters
%------------------------------------
clear
nel=10; % number of elements
nnel=3; % number of nodes per element
ndof=2; % number of dofs per node
nnode=12; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=28e6; % elastic modulus
poisson=0.25; % Poisson's ratio
%---------------------------------------------
% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y
%---------------------------------------------
gcoord=[10. 0.; 10. 1.; 11. 0.; 11. 1.; 12. 0.; 12. 1.;
13. 0.; 13. 1.; 14. 0.; 14. 1.; 15. 0.; 15. 1.];
%---------------------------------------------------------
% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes
%---------------------------------------------------------
nodes=[1 3 4; 1 4 2; 3 5 6; 3 6 4; 5 7 8;
5 8 6;7 9 10; 7 10 8; 9 11 12; 9 12 10];
%-------------------------------------
% input data for boundary conditions
%-------------------------------------
bcdof=[2 4 6 8 10 12 14 16 18 20 22 24]; % axial movement constrained
bcval=[0 0 0 0 0 0 0 0 0 0 0 0]; % whose described values are 0
%-----------------------------------------
% initialization of matrices and vectors
%-----------------------------------------
ff=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system matrix
disp=zeros(sdof,1); % system displacement vector
eldisp=zeros(edof,1); % element displacement vector
stress=zeros(nel,4); % matrix containing stress components
strain=zeros(nel,4); % matrix containing strain components
index=zeros(edof,1); % index vector
kinmtax=zeros(4,edof); % kinematic matrix
matmtx=zeros(4,4); % constitutive matrix
%----------------------------
% force vector
%----------------------------
pi=4.0*atan(1); % pi=3.141592
ff(1)=2e3*pi*2*10; % force applied at node 1 in x-axis
ff(3)=2e3*pi*2*10; % force applied at node 2 in x-axis
%-----------------------------------------------------------------
% computation of element matrices and vectors and their assembly
%-----------------------------------------------------------------
matmtx=fematiso(3,emodule,poisson); % compute constitutive matrix
for iel=1:nel % loop for the total number of elements
nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node
index=feeldof(nd,nnel,ndof);% extract system dofs associated with element
%-------------------------------------------------------
% find the derivatives of shape functions
%-------------------------------------------------------
area=0.5*(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2); % area of triangule
area2=area*2;
xcenter=(x1+x2+x3)/3; % x-centroid of triangle
ycenter=(y1+y2+y3)/3; % y-centroid of triangle
shape(1)=((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter)/area2;
shape(2)=((x3*y1-x1*y3)+(y3-y1)*xcenter+(x1-x3)*ycenter)/area2;
shape(3)=((x1*y2-x2*y1)+(y1-y2)*xcenter+(x2-x1)*ycenter)/area2;
dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)]; % derivatives w.r.t. x-axis
dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)]; % derivatives w.r.t. y-axis
kinmtax=fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix
k=2*pi*xcenter*area*kinmtax'*matmtx*kinmtax; % element matrix
kk=feasmbl1(kk,k,index); % assemble element matrices
end
%-----------------------------
% apply boundary conditions
%-----------------------------
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%----------------------------
% solve the matrix equation
%----------------------------
disp=kk\ff;
%---------------------------------------
% element stress computation
%---------------------------------------
for ielp=1:nel % loop for the total number of elements
nd(1)=nodes(ielp,1); % 1st connected node for (iel)-th element
nd(2)=nodes(ielp,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(ielp,3); % 3rd connected node for (iel)-th element
x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node
index=feeldof(nd,nnel,ndof);% extract system dofs associated with element
%-------------------------------------------------------
% extract element displacement vector
%-------------------------------------------------------
for i=1:edof
eldisp(i)=disp(index(i));
end
area=0.5*(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2); % area of triangule
area2=area*2;
xcenter=(x1+x2+x3)/3; % x-centroid of triangle
ycenter=(y1+y2+y3)/3; % y-centroid of triangle
shape(1)=((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter)/area2;
shape(2)=((x3*y1-x1*y3)+(y3-y1)*xcenter+(x1-x3)*ycenter)/area2;
shape(3)=((x1*y2-x2*y1)+(y1-y2)*xcenter+(x2-x1)*ycenter)/area2;
dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)]; % derivatives w.r.t. x-axis
dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)]; % derivatives w.r.t. y-axis
kinmtax=fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix
estrain=kinmtax*eldisp; % compute strains
estress=matmtx*estrain; % compute stresses
for i=1:4
strain(ielp,i)=estrain(i); % store for each element
stress(ielp,i)=estress(i); % store for each element
end
end
%------------------------------------
% print fem solutions
%------------------------------------
num=1:1:sdof;
displace=[num' disp] % print nodal displacements
for i=1:nel
stresses=[i stress(i,:)] % print stresses
end
%---------------------------------------------------------------