-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathEX891.m
81 lines (61 loc) · 3.34 KB
/
EX891.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
%----------------------------------------------------------------------------%
% Example 8.9.1 %
% to solve a static beam deflection using Hermitian beam elements %
% %
% Problem description %
% Find the deflection of a simply supported beam whose length is %
% 20 inches. The beam has also elastic modulus of 10x10e6 psi and %
% moment of inertia of cross-section 1/12 inch^4 with unit width. %
% It is subjected to a center load of 100 lb. Use 5 elements for %
% one half of the beam due to symmetry. %
% (see Fig. 8.9.1 for the element discretization) %
% %
% Variable descriptions %
% k = element stiffness matrix %
% kk = system stiffness matrix %
% ff = system force vector %
% index = a vector containing system dofs associated with each element %
% bcdof = a vector containing dofs associated with boundary conditions %
% bcval = a vector containing boundary condition values associated with %
% the dofs in 'bcdof' %
%----------------------------------------------------------------------------%
clear
nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node
nnode=(nnel-1)*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
el=10^7; % elastic modulus
xi=1/12; % moment of inertia of cross-section
tleng=10; % length of a half of the beam
leng=10/nel; % element length of equal size
area=1; % cross-sectional area of the beam
rho=1; % mass density (not used for static analysis)
ipt=1; % option for mass matrix (not used for static analysis)
bcdof(1)=1; % first dof (deflection at left end) is constrained
bcval(1)=0; % whose described value is 0
bcdof(2)=12; % 12th dof (slope at the symmetric end) is constrained
bcval(2)=0; % whose described value is 0
ff=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
ff(11)=50; % because a half of the load is applied due to symmetry
for iel=1:nel % loop for the total number of elements
index=feeldof1(iel,nnel,ndof); % extract system dofs associated with element
k=febeam1(el,xi,leng,area,rho,ipt); % compute element stiffness matrix
kk=feasmbl1(kk,k,index); % assemble each element matrix into system matrix
end
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
fsol=kk\ff; % solve the matrix equation
% analytical solution
e=10^7; l=20; xi=1/12; P=100;
for i = 1:nnode
x=(i-1)*2;
c=P/(48*e*xi);
k=(i-1)*ndof+1;
esol(k)=c*(3*l^2-4*x^2)*x;
esol(k+1)=c*(3*l^2-12*x^2);
end
% print both exact and fem solutions
num=1:1:sdof;
store=[num' fsol esol']