forked from pannous/tensorflow-speech-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecord.py
executable file
·138 lines (121 loc) · 3.32 KB
/
record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
import subprocess
import skimage.io
import traceback
import numpy
import numpy as np
import os
import sys
from os import system
from platform import system as platform
import skimage.io
import wave
import pyaudio
import matplotlib.pyplot as plt
plt.matshow([[1,0],[0,1]], fignum=1)
plt.draw()
if platform() == 'Darwin': # How Mac OS X is identified by Python
system('''/usr/bin/osascript -e 'tell app "Finder" to set frontmost of process "Python" to true' ''')
i = 0
width=256
height=256
# Number of bytes to be captured from audio stream
# CHUNK = 512
# CHUNK = 1024
# CHUNK = 1024
# CHUNK = 2048
CHUNK = 4096
# CHUNK = 9192
# number of bytes used per FFT fourier slice
# length=512
length = 1024
# length=2048
# length = 4096
# forward step in sliding window [ CHUNK [[length]-> ]step CHUNK ]
# step=32
# step=64
# step = 128
step=256
# step=512
# step<length : some overlap
image=numpy.array(bytearray(os.urandom(width*width)))
image=image.reshape(width,width)
def get_audio_input_stream():
INDEX = 0 # 1
# FORMAT = pyaudio.paInt8
FORMAT = pyaudio.paInt16
# FORMAT = pyaudio.paInt32
# FORMAT = pyaudio.paFloat32
CHANNELS = 1
# RATE = 22500
RATE = 48000 #* 2 = 96000Hz max on mac
INPUT_BLOCK_TIME = 0.05
# INPUT_BLOCK_TIME = 0.1
INPUT_FRAMES_PER_BLOCK = int(RATE * INPUT_BLOCK_TIME)
stream = pyaudio.PyAudio().open(
format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
input_device_index=INDEX)
return stream
def next_frame():
stream = get_audio_input_stream()
while True:
try:
dataraw = stream.read(CHUNK)
except IOError as e:
print(e) # [Errno -9981] Input overflowed WHY?
stream = get_audio_input_stream() # reset
continue
data0 = numpy.fromstring(dataraw, dtype='int16')
yield data0
def record():
global i
global image
global winName
FILENAME = 'recording.wav'
# r = numpy.array()
hamming_window = np.hamming(length) # minimize fourier frequency drain
#hamming hanning bartlett 'blackman'
r = numpy.empty(length)
stream = get_audio_input_stream()
offset = 0
while True:
try:
dataraw = stream.read(CHUNK)
except IOError as e:
print(e) # [Errno -9981] Input overflowed WHY?
stream=get_audio_input_stream()
continue
data0 = numpy.fromstring(dataraw, dtype='int16')
# data0 = numpy.fromstring(dataraw, dtype='int8')
if(i<20 and numpy.sum(np.abs(data0))<1000*width):
continue
r=numpy.append(r,data0)
while offset < r.size - length :
data = r[offset:offset+length]
data=data*hamming_window # minimize fourier frequency drain
offset=offset + step
data = numpy.fft.fft(data)#.abs()
data = numpy.absolute(data)
data = data[0:height]/256.0#.split(data,512)
data = numpy.log2(data*0.05+1.0)#//*50.0;
numpy.putmask(data, data > 255, 255)
image[i] = data
i = i+1
if(i==width):
print("i %d\r"%i)
i=0
# image=image.T
image=numpy.rot90(image)
plt.matshow(image, fignum=1)
plt.draw()
plt.pause(0.01)
# result=spec2word(image) #todo: reconnect
# subprocess.call(["say"," %s"%result])
# cv2.imshow(winName,image)
# if cv2.waitKey(10) == 27: BREAKS portAudio !!
if __name__ == '__main__':
record()