forked from pannous/tensorflow-speech-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber_classifier_tflearn.py
executable file
·35 lines (27 loc) · 1.1 KB
/
number_classifier_tflearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python
#!/usr/bin/env PYTHONIOENCODING="utf-8" python
import tflearn
import pyaudio
import speech_data
import numpy
# Simple spoken digit recognition demo, with 98% accuracy in under a minute
# Training Step: 544 | total loss: 0.15866
# | Adam | epoch: 034 | loss: 0.15866 - acc: 0.9818 -- iter: 0000/1000
batch=speech_data.wave_batch_generator(10000,target=speech_data.Target.digits)
X,Y=next(batch)
number_classes=10 # Digits
# Classification
tflearn.init_graph(num_cores=8, gpu_memory_fraction=0.5)
net = tflearn.input_data(shape=[None, 8192])
net = tflearn.fully_connected(net, 64)
net = tflearn.dropout(net, 0.5)
net = tflearn.fully_connected(net, number_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')
model = tflearn.DNN(net)
model.fit(X, Y,n_epoch=3,show_metric=True,snapshot_step=100)
# Overfitting okay for now
demo_file = "5_Vicki_260.wav"
demo=speech_data.load_wav_file(speech_data.path + demo_file)
result=model.predict([demo])
result=numpy.argmax(result)
print("predicted digit for %s : result = %d "%(demo_file,result))