-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathMPSClass.py
1587 lines (1499 loc) · 77.9 KB
/
MPSClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import TensorBasicModule as T_module
import numpy as np
from ipdb import set_trace
from scipy.sparse.linalg import eigsh as eigs
from scipy.sparse.linalg import LinearOperator as LinearOp
from HamiltonianModule import spin_operators
from BasicFunctionsSJR import empty_list, trace_stack, sort_list, print_error, print_sep, \
print_options, print_dict, info_contact
from termcolor import colored, cprint
class MpsBasic:
def __init__(self):
self.version = '2018-06-3'
self.operators = list()
def append_operators(self, op_new):
if type(op_new) is np.ndarray:
self.operators.append(op_new)
else:
for n in range(0, len(op_new)):
self.operators.append(op_new[n])
class MpsOpenBoundaryClass(MpsBasic):
""" Create an open-boundary MPS
Example: create an MPS with 8 sites
>>> length = 8 # number of sites/tensors
>>> d = 2 # physical bond dimension
>>> chi = 10 # virtual bond dimension
>>> a = MpsOpenBoundaryClass(length, d, chi, way='svd', ini_way='r')
* Other inputs:
way: 'svd' (default) or 'qr'. When decomposing the tensors, use SVD or QR decomposition
ini_way: 'r' or 'q'. When initializing the MPS, use numpy.random.randn or numpy.ones
debug: True or False. Whether or not (default) in the debug mode.
For some general information, use self.print_general_info()
>>> a.print_general_info()
The help documentation for the member functions are to be added
Note: with large size of lattice, or large bond dimenion cut-off, you may play with the following parameters
to reach the optimal efficiency (for small parameter, the default is the optimal choice):
1. is_parallel = True or False (default). If it is true, parallel computing will be used. It costs slightly
more memory. Parallel computing will in theory improve the efficiency with a large number of interaction
terms (e.g., long-range or fully-connected models)
2. is_save_op = True or False (default). If it is true, effective operators will be save for reusing. It
costs more memory. Saving effective operators will in theory improve the efficiency with a large lattice
size (e.g., long chains)
3. eig_way = 0 (default) or 1. With eig_way = 0, the full effective Hamiltonians will be calculated to put
in eigs function. With eig_way = 1, the full effective Hamiltonians is avoided to (possibly) reduce the memory
cost, and an operator is defined to put in eigs function. Recommend to use the first with relatively a large
number of interaction terms, and use the second with a relatively large bond dimension cut-off
"""
def __init__(self, length, d, chi, spin='half', way='qr', ini_way='r', operators=None,
debug=False, is_parallel=False, is_save_op=False, eig_way=0, par_pool=None,
is_env_parallel_lmr=True):
MpsBasic.__init__(self)
self.spin = spin
self.phys_dim = d
self.decomp_way = way # 'svd' or 'qr'
self.length = length
# self.orthogonality: -1: left2right; 0: not orthogonal or center; 1: right2left
self.orthogonality = np.zeros((length, 1))
self.center = -1 # orthogonal center; -1 means no center
self.lm = empty_list(length-1, np.zeros(0))
self.ent = np.zeros((self.length-1, 1))
if ini_way == 'r': # randomly initialize MPS
self.mps = T_module.random_open_mps(length, d, chi)
elif ini_way == '1': # initialize MPS as eyes
self.mps = T_module.ones_open_mps(length, d, chi)
self.virtual_dim = np.ones((length + 1,)).astype(int) * chi
self.virtual_dim[0] = 1
self.virtual_dim[-1] = 1
if operators is None:
op_half = spin_operators(spin)
self.operators = [op_half['id'], op_half['sx'], op_half['sy'], op_half['sz'], op_half['su'],
op_half['sd']]
else:
self.operators = operators
self._is_save_op = is_save_op # whether saving all effective operators to accelerate the code
self.effect_s = {'none': np.zeros(0)}
self.pos_effect_s = np.zeros((0, 3)).astype(int)
self.effect_ss = {'none': np.zeros(0)}
self.pos_effect_ss = np.zeros((0, 5)).astype(int)
self.effective_id = {'none': np.zeros(0)}
self.opt_env = dict()
self._is_parallel = is_parallel
self.pool = par_pool
self._debug = debug # if in debug mode
self.eig_way = eig_way
self._is_env_parallel_lmr = is_env_parallel_lmr
if self._is_parallel and self._is_save_op:
cprint('Note: this version forbids to use parallel computing while in the is_save_op mode', 'cyan')
cprint('The is_save_op mode has been automatically switched off', 'magenta')
cprint('This issue will be fixed in the next version', 'cyan')
self._is_save_op = False
if debug:
cprint('Note: you are in the debug mode', 'cyan')
if self._is_save_op:
cprint('Note: you are in the is_save_op mode. The code will save intermediate results to accelerate '
'the computation', 'cyan')
if self._is_parallel:
cprint('Note: you are using parallel computing. The parallel computing will be used when '
'computing the environment for different different coupling terms', 'cyan')
def print_general_info(self):
print_sep('DMRG & MPS Documentation (%s)' % self.version, style='#')
print('Install the following modules/libs before using: ')
print_options(['numpy', 'scipy', 'matplotlib'], welcome='\t', style_sep='.', end='\n\t', color='magenta')
print_sep('For using EasyStartDMRG (v2018.06-1)')
print('* To use EasyStartDMRG, you only need to know three things:')
print_options(['What you are simulating (e.g., Heisenber model, entanglement, ect.)', 'How to run a Python code',
'English'], welcome='\t', style_sep='.', end='\n\t')
cprint('\t* It is ok if you may not know how DMRG works')
print('* Steps to use EasyStartDMRG: ')
print_options(['Run \'EasyStartDMRG\'', 'Input the parameters by following the instructions',
'Choose the quantities you are interested in'], welcome='\t', style_sep='.', end='\n\t',)
print('Some notes:')
print_options(['Your parameters are saved in \'.\\para_dmrg\_para.pr\'',
'To read *.pr, use function \'load_pr\' in \'Basic_functions_SJR.py\'',
'The results including the MPS will be save in \'.\\data_dmrg\''
], welcome='\t', style_sep='.', end='\n\t',)
print_sep('Contact Information')
print_dict(info_contact(), ['name', 'affiliation', 'email'])
def report_yourself(self):
"""
Print some relevant information of the current MPS
Example:
>>> a = MpsOpenBoundaryClass(8, 2, 4)
>>> a.report_yourself()
"""
print('center: ' + str(self.center))
print('orthogonality:' + str(self.orthogonality.T))
print('virtual bond dimensions: ' + str(self.virtual_dim))
for n in range(0, self.length-1):
print('lm[%d] = ' % n + str(self.lm[n]))
for n in range(0, self.length-1):
print('ent[%d] = ' % n + str(self.ent[n]))
def orthogonalize_mps(self, l0, l1):
"""
Orthogonalization of the MPS from l0-th to l1-th tensors. Note that from l0-th to (l1-1)-th, the tensor will
be left-to-right orthogonal (l0<l1) or right-to-left orthogonal (l0>l1)
:param l0: starting pointing of the orthogonalization
:param l1: ending pointing of the orthogonalization
"""
if l0 < l1: # Orthogonalize MPS from left to rigth
for n in range(l0, l1):
self.mps[n], mat, self.virtual_dim[n+1], lm = \
T_module.left2right_decompose_tensor(self.mps[n], self.decomp_way)
if lm.size > 0 and self.center > -1:
self.lm[n] = lm.copy()
self.mps[n+1] = T_module.absorb_matrix2tensor(self.mps[n + 1], mat, 0)
self.orthogonality[l0:l1] = -1
self.orthogonality[l1] = 0
elif l0 > l1: # Orthogonalize MPS from right to left
for n in range(l0, l1, -1):
self.mps[n], mat, self.virtual_dim[n], lm =\
T_module.right2left_decompose_tensor(self.mps[n], self.decomp_way)
if lm.size > 0 and self.center > -1:
self.lm[n-1] = lm.copy()
self.mps[n-1] = T_module.absorb_matrix2tensor(self.mps[n - 1], mat, 2)
self.orthogonality[l0:l1:-1] = 1
self.orthogonality[l1] = 0
# transfer the MPS into the central orthogonal form with the center lc
def central_orthogonalization(self, lc, l0=0, l1=-1):
"""
Transform the MPS into central orthogonal form, with lc the center. Note you can specify the starting
and ending point of the orthogonalization process
:param lc: new center
:param l0: starting point (0 as default)
:param l1: ending point (self.length-1 as default)
Warning: * if the MPS is not central orthogonal, this function may not transform it into a orthogonal form
* To central-orthogonalize the MPS or change the center, recommend to use correct_orthogonal_center
Example:
"""
if l1 == -1:
l1 = self.length-1
self.orthogonalize_mps(l0, lc)
self.orthogonalize_mps(l1, lc)
self.center = lc
# move the orthogonal center at p
def correct_orthogonal_center(self, p=-1):
# if p<0 (default) and there is no center, automatically find a new center
if p < -0.5 and self.center < -0.5:
p = self.check_orthogonal_center(if_print=False)
elif p < -0.5:
p = self.center
if self.center < -0.5:
self.central_orthogonalization(p)
elif self.center != p:
self.orthogonalize_mps(self.center, p)
self.center = p
# ===========================================================
# For handling effective operators in the fast mode
@ staticmethod
def key_effective_operators(info):
# generate the key of one-body or two-body effective operator
# info = (sn, ssn, p0, q0, p1)
x = ''
for n in range(0, info.__len__() - 1):
x += str(info[n]) + '_'
x += str(info[-1])
return x
@ staticmethod
def key_restore_info(key):
return key.split('_')
def add_key_and_pos(self, which_op, key_info, op):
key = self.key_effective_operators(key_info)
if which_op is 'one':
if key not in self.effect_s:
self.pos_effect_s = np.vstack((self.pos_effect_s, np.array(key_info)))
self.effect_s[key] = op
elif which_op is 'two':
if key not in self.effect_ss:
self.pos_effect_ss = np.vstack((self.pos_effect_ss, np.array(key_info)))
self.effect_ss[key] = op
def find_nearest_key_one_body(self, sn, p0, p1):
pos = self.pos_effect_s[self.pos_effect_s[:, 0] == sn, :]
pos = pos[pos[:, 1] == p0, :]
if p0 < p1: # RG flow: left to right
pos = pos[pos[:, 2] < p1, :]
pos = pos[pos[:, 2] > p0, :]
if pos.size == 0:
p_before = None
key_info = (sn, p0, p0+1)
else:
n = np.argmax(pos[:, 2])
p_before = pos[n, 2]
key_info = tuple(pos[n, :])
else:
pos = pos[pos[:, 2] > p1, :]
pos = pos[pos[:, 2] <= p0, :]
if pos.size == 0:
p_before = None
key_info = (sn, p0, p0)
else:
n = np.argmin(pos[:, 2])
p_before = pos[n, 2]
key_info = tuple(pos[n, :])
return key_info, p_before
def get_effective_operators_one_body(self, sn, p0, p1, is_update_op=True):
# sn: which operator
# p0: original position of the operator (site)
# p1: position of the target effective operator (bond)
key = self.key_effective_operators((sn, p0, p1))
if key in self.effect_s:
return self.effect_s[key]
else:
key_info, p_before = self.find_nearest_key_one_body(sn, p0, p1)
if p_before is None:
if p0 < p1:
if self.center < p0:
v = self.effective_id[str(self.center) + '_' + str(p0)]
v = T_module.bound_vec_operator_left2right(self.mps[p0], self.operators[sn], v=v)
else:
v = T_module.bound_vec_operator_left2right(self.mps[p0], self.operators[sn])
if is_update_op:
self.add_key_and_pos('one', key_info, v)
v = self.update_effect_op_l0_to_l1(p0+1, p1, v, sn, p0, is_update_op=is_update_op)
else:
if self.center > p0:
v = self.effective_id[str(self.center) + '_' + str(p0+1)]
v = T_module.bound_vec_operator_right2left(self.mps[p0], self.operators[sn], v=v)
else:
v = T_module.bound_vec_operator_right2left(self.mps[p0], self.operators[sn])
if is_update_op:
self.add_key_and_pos('one', key_info, v)
v = self.update_effect_op_l0_to_l1(p0-1, p1-1, v, sn, p0, is_update_op=is_update_op)
else:
key_before = self.key_effective_operators(key_info)
if p0 < p1:
v = self.update_effect_op_l0_to_l1(p_before, p1, self.effect_s[key_before],
sn, p0, is_update_op=is_update_op)
else:
v = self.update_effect_op_l0_to_l1(p_before-1, p1-1, self.effect_s[key_before],
sn, p0, is_update_op=is_update_op)
return v
def get_effective_operator_two_body(self, sn, snn, p0, q0, p1, is_update_op=True):
# the self.operators[sn] is originally at p0-th site
# the self.operators[ssn] is originally at q0-th site
# the effective two-body operator is at the p1-th bond
# here, we have p0 < q0 <= p1, or p1 >= q0 > p0 (on the same side of the RG endpoint)
if p0 > q0: # make sure p0 < q0
p0, q0 = q0, p0
sn, snn = snn, sn
key2 = self.key_effective_operators((sn, snn, p0, q0, p1))
if key2 in self.effect_ss:
return self.effect_ss[key2]
elif q0 == p1:
print_error('LogicBug detected: please check')
else:
return self.update_effect_from_op1_to_op2(sn, snn, p0, q0, p1, is_update_op=is_update_op)
def del_bad_effective_operators(self, p):
# delete the badly defined effective operators due to the change of the p-th tensor
if self.pos_effect_s.shape[0] > 0:
ind = (self.pos_effect_s[:, 1] < p) * (self.pos_effect_s[:, 2] <= p)
ind += (self.pos_effect_s[:, 1] > p) * (self.pos_effect_s[:, 2] > p)
ind_del = (~ ind)
pos_del = self.pos_effect_s[ind_del, :]
for n in range(0, pos_del.shape[0]):
key = self.key_effective_operators(tuple(pos_del[n, :]))
self.effect_s.__delitem__(key)
self.pos_effect_s = self.pos_effect_s[ind, :]
if self.pos_effect_ss.shape[0] > 0:
ind = (self.pos_effect_ss[:, 3] < p) * (self.pos_effect_ss[:, 4] <= p)
ind += (self.pos_effect_ss[:, 2] > p) * (self.pos_effect_ss[:, 4] > p)
ind_del = (~ ind)
pos_del = self.pos_effect_ss[ind_del, :]
for n in range(0, pos_del.shape[0]):
key = self.key_effective_operators(tuple(pos_del[n, :]))
self.effect_ss.__delitem__(key)
self.pos_effect_ss = self.pos_effect_ss[ind, :]
# ===========================================================================
# DMRG related functions
@ staticmethod
def calculate_environment_for_parallel(results, dim):
x = np.zeros((dim, dim))
for n in range(0, len(results)):
x += np.kron(np.kron(results[n][0], results[n][1]), results[n][2])
return x
def environment_s1_s2(self, inputs):
# p is the center and the position of the tensor to be updated
# the two operators are at positions[0] and positions[1]
p, sn, positions = inputs
if self._debug:
self.check_orthogonal_center(p)
operators = [self.operators[sn[0]], self.operators[sn[1]]]
v_left = np.zeros(0)
v_right = np.zeros(0)
if positions[0] > positions[1]:
positions = sort_list(positions, [1, 0])
operators = sort_list(operators, [1, 0])
if p < positions[0]:
v_left = np.eye(self.virtual_dim[p])
v_middle = np.eye(self.mps[p].shape[1])
if self._is_save_op:
v_right = self.get_effective_operator_two_body(sn[0], sn[1], positions[0],
positions[1], p+1)
else:
v_right = T_module.bound_vec_operator_right2left(self.mps[positions[1]], operators[1], v_right)
v_right = self.contract_v_l0_to_l1(positions[1]-1, positions[0], v_right)
v_right = T_module.bound_vec_operator_right2left(self.mps[positions[0]], operators[0], v_right)
v_right = self.contract_v_l0_to_l1(positions[0] - 1, p, v_right)
elif p > positions[1]:
if self._is_save_op:
v_left = self.get_effective_operator_two_body(sn[0], sn[1], positions[0],
positions[1], p)
else:
v_left = T_module.bound_vec_operator_left2right(self.mps[positions[0]], operators[0], v_left)
v_left = self.contract_v_l0_to_l1(positions[0]+1, positions[1], v_left)
v_left = T_module.bound_vec_operator_left2right(self.mps[positions[1]], operators[1], v_left)
v_left = self.contract_v_l0_to_l1(positions[1] + 1, p, v_left)
v_middle = np.eye(self.mps[p].shape[1])
v_right = np.eye(self.virtual_dim[p + 1])
elif p == positions[0]:
v_left = np.eye(self.virtual_dim[p])
v_middle = operators[0]
if self._is_save_op:
v_right = self.get_effective_operators_one_body(sn[1], positions[1], p+1)
else:
v_right = T_module.bound_vec_operator_right2left(self.mps[positions[1]], operators[1], v_right)
v_right = self.contract_v_l0_to_l1(positions[1] - 1, p, v_right)
elif p == positions[1]:
if self._is_save_op:
v_left = self.get_effective_operators_one_body(sn[0], positions[0], p)
else:
v_left = T_module.bound_vec_operator_left2right(self.mps[positions[0]], operators[0], v_left)
v_left = self.contract_v_l0_to_l1(positions[0] + 1, p, v_left)
v_right = np.eye(self.virtual_dim[p + 1])
v_middle = operators[1]
else:
if self._is_save_op:
v_left = self.get_effective_operators_one_body(sn[0], positions[0], p)
v_right = self.get_effective_operators_one_body(sn[1], positions[1], p+1)
else:
v_left = T_module.bound_vec_operator_left2right(self.mps[positions[0]], operators[0], v_left)
v_left = self.contract_v_l0_to_l1(positions[0] + 1, p, v_left)
v_right = T_module.bound_vec_operator_right2left(self.mps[positions[1]], operators[1], v_right)
v_right = self.contract_v_l0_to_l1(positions[1] - 1, p, v_right)
v_middle = np.eye(self.mps[p].shape[1])
# if self.virtual_dim[p] != v_left.shape[0] or self.virtual_dim[p+1] != v_right.shape[0]:
# print('Wrong dimension: ' + str((sn[0], sn[1], positions[0], positions[1], p+1)))
return v_left, v_middle, v_right
def environment_s1_parallel(self, inputs):
env2 = 0
for n in range(0, inputs.__len__()):
v_left, v_middle, v_right = self.environment_s1(inputs[n][:3])
env2 += inputs[n][3] * np.kron(np.kron(v_left, v_middle), v_right)
return env2
# calculate the environment (one-body terms)
def environment_s1(self, inputs):
# p is the position of the tensor to be updated
# the operator[sn] is at position
p, sn, position = inputs
if self._debug:
self.check_orthogonal_center(p)
self.check_virtual_bond_dimensions()
operator = self.operators[sn]
v_left = np.zeros(0)
v_right = np.zeros(0)
if p < position:
v_left = np.eye(self.virtual_dim[p])
v_middle = np.eye(self.mps[p].shape[1])
if self._is_save_op:
v_right = self.get_effective_operators_one_body(sn, position, p+1)
else:
v_right = T_module.bound_vec_operator_right2left(self.mps[position],
operator, v_right)
v_right = self.contract_v_l0_to_l1(position - 1, p, v_right)
elif p > position:
if self._is_save_op:
v_left = self.get_effective_operators_one_body(sn, position, p)
else:
v_left = T_module.bound_vec_operator_left2right(self.mps[position],
operator, v_left)
v_left = self.contract_v_l0_to_l1(position + 1, p, v_left)
v_right = np.eye(self.virtual_dim[p + 1])
v_middle = np.eye(self.mps[p].shape[1])
else: # p == position
v_left = np.eye(self.virtual_dim[p])
v_right = np.eye(self.virtual_dim[p + 1])
v_middle = operator
return v_left, v_middle, v_right
def environment_s1_s2_parallel(self, inputs):
env2 = 0
for n in range(0, inputs.__len__()):
v_left, v_middle, v_right = self.environment_s1_s2(inputs[n])
env2 += np.kron(np.kron(v_left, v_middle), v_right)
return env2
# update the boundary vector v by contracting from l0 to l1 without operators
def contract_v_l0_to_l1(self, l0, l1, v=np.zeros(0)):
if l0 < l1:
for n in range(l0, l1):
v = T_module.bound_vec_operator_left2right(tensor=self.mps[n], v=v)
elif l0 > l1:
for n in range(l0, l1, -1):
v = T_module.bound_vec_operator_right2left(tensor=self.mps[n], v=v)
return v
def contract_v_with_phys_l0_to_l1(self, l0, lp, l1, v=np.zeros(0)):
# Note: lp is the position of remained physical bond, and l0<lp<l1, or l0>lp>l1
if l0 < l1: # left to right
for n in range(l0, lp):
v = T_module.bound_vec_operator_left2right(tensor=self.mps[n], v=v)
for n in range(lp, l1):
v = T_module.bound_vec_with_phys_left2right(self.mps[n], v)
elif l0 > l1:
for n in range(l0, lp, -1):
v = T_module.bound_vec_operator_right2left(tensor=self.mps[n], v=v)
for n in range(lp, l1, -1):
v = T_module.bound_vec_with_phys_right2left(self.mps[n], v)
return v
def update_effect_op_l0_to_l1(self, l0, l1, v, sn=-1, pos0=-1, is_update_op=True):
# l0: starting site
# l1: before the ending site
# sn is the number of the operator
# pos0 is the original position of v (effective operator)
if l0 < l1:
for n in range(l0, l1):
v = T_module.bound_vec_operator_left2right(tensor=self.mps[n], v=v)
if is_update_op:
self.add_key_and_pos('one', (sn, pos0, n+1), v)
elif l0 > l1:
for n in range(l0, l1, -1):
v = T_module.bound_vec_operator_right2left(tensor=self.mps[n], v=v)
if is_update_op:
self.add_key_and_pos('one', (sn, pos0, n), v)
return v
def update_all_effective_id(self):
self.effective_id = dict()
v = np.eye(self.virtual_dim[self.center])
for n in range(self.center, self.length):
key = str(self.center) + '_' + str(n+1)
v = T_module.bound_vec_operator_left2right(self.mps[n], v=v)
self.effective_id[key] = v
v = np.eye(self.virtual_dim[self.center+1])
for n in range(self.center, 0, -1):
key = str(self.center) + '_' + str(n)
v = T_module.bound_vec_operator_right2left(self.mps[n], v=v)
self.effective_id[key] = v
def update_effect_from_op1_to_op2(self, sn, snn, p0, q0, p1, is_update_op=True):
# here, we have p0 < q0 < p1, or p1 >= q0 > p0 (on the same side of the RG endpoint)
if q0 < p1: # left to right
v = self.get_effective_operators_one_body(sn, p0, q0)
v = T_module.bound_vec_operator_left2right(self.mps[q0], self.operators[snn], v)
if is_update_op:
self.add_key_and_pos('two', (sn, snn, p0, q0, q0+1), v)
for n in range(q0+1, p1):
v = T_module.bound_vec_operator_left2right(tensor=self.mps[n], v=v)
# v = self.update_effect_op_l0_to_l1(n, n+1, v, is_update_op=False)
if is_update_op:
self.add_key_and_pos('two', (sn, snn, p0, q0, n+1), v)
elif p1 <= p0:
v = self.get_effective_operators_one_body(snn, q0, p0+1)
v = T_module.bound_vec_operator_right2left(self.mps[p0], self.operators[sn], v)
if is_update_op:
self.add_key_and_pos('two', (sn, snn, p0, q0, p0), v)
for n in range(p0-1, p1-1, -1):
v = T_module.bound_vec_operator_right2left(tensor=self.mps[n], v=v)
# v = self.update_effect_op_l0_to_l1(n, n - 1, v, is_update_op=False)
if is_update_op:
self.add_key_and_pos('two', (sn, snn, p0, q0, n), v)
else:
# if this happen, there must be a logic bug
v = None
print_error('LogicBug detected. Please check')
return v
def effective_hamiltonian_dmrg(self, p, index1, index2, coeff1, coeff2, tol=1e-12):
if self._debug and p != self.center:
print_error('CenterError: the tensor must be at the orthogonal center before '
'defining the function handle', 'magenta')
nh1 = index1.shape[0] # number of one-body Hamiltonians
nh2 = index2.shape[0] # number of two-body Hamiltonians
s = [self.virtual_dim[p], self.phys_dim, self.virtual_dim[p+1]]
dim = np.prod(s)
if not self._is_parallel:
h_effect = np.zeros((dim, dim))
for n in range(0, nh1):
# if the coefficient is too small, ignore its contribution
if abs(coeff1[n]) > tol and np.linalg.norm(self.operators[index1[n, 1]].reshape(1, -1)) > tol:
v_left, v_middle, v_right = \
self.environment_s1((p, index1[n, 1], index1[n, 0]))
if self._debug:
self.check_environments(v_left, v_middle, v_right, p)
h_effect += coeff1[n] * np.kron(np.kron(v_left, v_middle), v_right)
for n in range(0, nh2):
# if the coefficient is too small, ignore its contribution
if abs(coeff2[n]) > tol:
v_left, v_middle, v_right = \
self.environment_s1_s2((p, index2[n, 2:4], index2[n, :2]))
if self._debug:
self.check_environments(v_left, v_middle, v_right, p)
h_effect += coeff2[n] * np.kron(np.kron(v_left, v_middle), v_right)
else: # parallel computations
inputs = empty_list(self.pool['n'], list())
n_now = 0
for n in range(0, nh1):
if abs(coeff1[n]) > tol and np.linalg.norm(self.operators[index1[n, 1]].reshape(1, -1)) > tol:
inputs[n_now % self.pool['n']].append((p, index1[n, 1], index1[n, 0], coeff1[n]))
n_now += 1
tmp = self.pool['pool'].map(self.environment_s1_parallel, inputs)
h_effect = 0
for n in range(0, tmp.__len__()):
h_effect += tmp[n]
inputs = empty_list(self.pool['n'], list())
n_now = 0
for n in range(0, nh2):
# if the coefficient is too small, ignore its contribution
if abs(coeff2[n]) > tol:
inputs[n_now % self.pool['n']].append((p, index2[n, 2:4], index2[n, :2]))
n_now += 1
tmp = self.pool['pool'].map(self.environment_s1_s2_parallel, inputs)
for n in range(0, tmp.__len__()):
h_effect += tmp[n]
# h_effect = (h_effect + h_effect.conj().T) / 2
return h_effect, s
def all_environments(self, p, index1, index2, coeff1, coeff2, tol=1e-12):
# for 'update_tensor_eigs' while mapping the effective H to a linear operator
if self._debug and p != self.center:
print_error('CenterError: the tensor must be at the orthogonal center before '
'defining the function handle', 'magenta')
nh1 = index1.shape[0]
nh2 = index2.shape[0]
s = [self.virtual_dim[p], self.phys_dim, self.virtual_dim[p+1]]
if not self._is_parallel and not self._is_env_parallel_lmr:
# No parallel computing
env1 = list()
env2 = list()
for n in range(0, nh1):
# if the coefficient is too small, ignore its contribution
if abs(coeff1[n]) > tol and np.linalg.norm(self.operators[index1[n, 1]].reshape(1, -1)) > tol:
env1.append(self.environment_s1((p, index1[n, 1], index1[n, 0])))
for n in range(0, nh2):
# if the coefficient is too small, ignore its contribution
if abs(coeff2[n]) > tol:
env2.append(self.environment_s1_s2((p, index2[n, 2:4], index2[n, :2])))
elif (not self._is_parallel) and self._is_env_parallel_lmr:
inputs = list()
for n in range(0, nh1):
if abs(coeff1[n]) > tol and np.linalg.norm(
self.operators[index1[n, 1]].reshape(1, -1)) > tol:
inputs.append((p, index1[n, 1], index1[n, 0]))
env1 = self.pool['pool'].map(self.environment_s1, inputs)
inputs = list()
for n in range(0, nh2):
if abs(coeff2[n]) > tol:
inputs.append((p, index2[n, 2:4], index2[n, :2]))
env2 = self.pool['pool'].map(self.environment_s1_s2, inputs)
else:
inputs = empty_list(self.pool['n'], list())
n_now = 0
for n in range(0, nh1):
if abs(coeff1[n]) > tol and np.linalg.norm(self.operators[index1[n, 1]].reshape(1, -1)) > tol:
inputs[n_now % self.pool['n']].append((p, index1[n, 1], index1[n, 0]))
n_now += 1
env1 = self.pool['pool'].map(self.environment_s1_parallel, inputs)
inputs = empty_list(self.pool['n'], list())
n_now = 0
for n in range(0, nh2):
# if the coefficient is too small, ignore its contribution
if abs(coeff2[n]) > tol:
inputs[n_now % self.pool['n']].append((p, index2[n, 2:4], index2[n, :2]))
n_now += 1
env2 = self.pool['pool'].map(self.environment_s1_s2_parallel, inputs)
self.pool['pool'].join()
return env1, env2, s
def all_environments_optimized(self, p, index1, index2, coeff1, coeff2, tol=1e-12):
# for 'update_tensor_eigs' while mapping the effective H to a linear operator
if self._debug and p != self.center:
print_error('CenterError: the tensor must be at the orthogonal center before '
'defining the function handle', 'magenta')
nh1 = index1.shape[0]
nh2 = index2.shape[0]
s = [self.virtual_dim[p], self.phys_dim, self.virtual_dim[p+1]]
if not self._is_parallel and not self._is_env_parallel_lmr:
# No parallel computing
for n in range(0, nh1):
# if the coefficient is too small, ignore its contribution
if abs(coeff1[n]) > tol and np.linalg.norm(self.operators[index1[n, 1]].reshape(1, -1)) > tol:
env1 = self.environment_s1((p, index1[n, 1], index1[n, 0]))
self.classify_and_update_env(env1, coeff1[n], 'one', index1[n, 0], index1[n, 1], p)
for n in range(0, nh2):
# if the coefficient is too small, ignore its contribution
if abs(coeff2[n]) > tol:
env2 = self.environment_s1_s2((p, index2[n, 2:4], index2[n, :2]))
self.classify_and_update_env(env2, coeff2[n], 'two', index2[n, :2], index2[n, 2:4], p)
elif (not self._is_parallel) and self._is_env_parallel_lmr:
inputs = list()
for n in range(0, nh1):
if abs(coeff1[n]) > tol and np.linalg.norm(
self.operators[index1[n, 1]].reshape(1, -1)) > tol:
inputs.append((p, index1[n, 1], index1[n, 0]))
env1 = self.pool['pool'].map(self.environment_s1, inputs)
inputs = list()
for n in range(0, nh2):
if abs(coeff2[n]) > tol:
inputs.append((p, index2[n, 2:4], index2[n, :2]))
env2 = self.pool['pool'].map(self.environment_s1_s2, inputs)
else:
inputs = empty_list(self.pool['n'], list())
n_now = 0
for n in range(0, nh1):
if abs(coeff1[n]) > tol and np.linalg.norm(self.operators[index1[n, 1]].reshape(1, -1)) > tol:
inputs[n_now % self.pool['n']].append((p, index1[n, 1], index1[n, 0]))
n_now += 1
env1 = self.pool['pool'].map(self.environment_s1_parallel, inputs)
inputs = empty_list(self.pool['n'], list())
n_now = 0
for n in range(0, nh2):
# if the coefficient is too small, ignore its contribution
if abs(coeff2[n]) > tol:
inputs[n_now % self.pool['n']].append((p, index2[n, 2:4], index2[n, :2]))
n_now += 1
env2 = self.pool['pool'].map(self.environment_s1_s2_parallel, inputs)
self.pool['pool'].join()
return s
def classify_and_update_env(self, envs, coeff, which_env, pos, sn, p):
if which_env is 'one':
if pos < p:
key = '1_0_0'
if key in self.opt_env:
self.opt_env[key] += envs[0] * coeff
else:
self.opt_env[key] = envs[0] * coeff
elif pos == p:
key = '0_' + str(sn) + '_0'
if key in self.opt_env:
self.opt_env[key] += envs[1] * coeff
else:
self.opt_env[key] = envs[1] * coeff
elif pos > p:
key = '0_0_1'
if key in self.opt_env:
self.opt_env[key] += envs[2] * coeff
else:
self.opt_env[key] = envs[2] * coeff
elif which_env is 'two':
if max(pos) < p:
key = '1_0_0'
if key in self.opt_env:
self.opt_env[key] += envs[0] * coeff
else:
self.opt_env[key] = envs[0] * coeff
elif min(pos) > p:
key = '0_0_1'
if key in self.opt_env:
self.opt_env[key] += envs[2] * coeff
else:
self.opt_env[key] = envs[2] * coeff
elif max(pos) == p:
key = '1_' + str(sn[1]) + '_0'
if key in self.opt_env:
self.opt_env[key] += envs[0] * coeff
else:
self.opt_env[key] = envs[0] * coeff
elif min(pos) == p:
key = '0_' + str(sn[0]) + '_1'
if key in self.opt_env:
self.opt_env[key] += envs[2] * coeff
else:
self.opt_env[key] = envs[2] * coeff
else:
key = '1_0_1'
if key not in self.opt_env:
self.opt_env[key] = list()
self.opt_env[key].append([coeff, envs[0], envs[2]])
@staticmethod
def update_tensor_eigs_f_handle(tensor, env1, env2, coeff1, coeff2, s, tau):
nh1 = len(env1)
nh2 = len(env2)
tensor = tensor.reshape(s)
tensor1 = tensor.copy()
if type(env1) is list:
for n in range(0, nh1):
tensor1 -= tau * coeff1[n] * T_module.absorb_matrices2tensor_full_fast(
tensor, [x.T for x in env1[n]])
for n in range(0, nh2):
tensor1 -= tau * coeff2[n] * T_module.absorb_matrices2tensor_full_fast(
tensor, [x.T for x in env2[n]])
else:
for n in range(0, nh1):
tensor1 -= tau * env1[n].dot(tensor)
for n in range(0, nh2):
tensor1 -= tau * env2[n].dot(tensor)
return tensor1.reshape(-1, 1)
def update_tensor_eigs_f_handle_optimized(self, tensor, s, tau):
tensor = tensor.reshape(s)
tensor1 = tensor.copy()
for key in self.opt_env:
x = key.split('_')
if x[0] is '1' and x[1] is '0' and x[2] is '0': # left
tensor1 -= tau * T_module.absorb_matrix2tensor(tensor, self.opt_env[key].T, 0)
elif x[0] is '0' and x[1] is '0' and x[2] is '1': # right
tensor1 -= tau * T_module.absorb_matrix2tensor(tensor, self.opt_env[key].T, 2)
elif x[0] is '0' and x[1] is not '0' and x[2] is '0': # middle
tensor1 -= tau * T_module.absorb_matrix2tensor(tensor, self.opt_env[key].T, 1)
elif x[0] is '1' and x[1] is not '0' and x[2] is '0':
tensor1 -= tau * T_module.absorb_matrices2tensor(
tensor, [self.opt_env[key].T, self.operators[int(x[1])].T], [0, 1])
elif x[0] is '0' and x[1] is not '0' and x[2] is '1':
tensor1 -= tau * T_module.absorb_matrices2tensor(
tensor, [self.opt_env[key].T, self.operators[int(x[1])].T], [2, 1])
elif key is '1_0_1':
for env in self.opt_env['1_0_1']:
tensor1 -= tau * env[0] * T_module.absorb_matrices2tensor(
tensor, [x.T for x in env[1:]], [0, 2])
return tensor1.reshape(-1, )
def update_tensor_eigs(self, p, index1, index2, coeff1, coeff2, tau, is_real, tol=1e-16):
_center = self.center
self.correct_orthogonal_center(p) # move the orthogonal tensor to p
if self._is_save_op:
if -0.5 < _center < p:
for n in range(_center, p+1):
self.del_bad_effective_operators(n)
elif _center >= p:
for n in range(p, _center+1):
self.del_bad_effective_operators(n)
else:
cprint('CenterError: central-orthogonalize MPS before updating the tensor', 'magenta')
set_trace()
self.update_all_effective_id()
if self.eig_way == 0:
h_effect, s = self.effective_hamiltonian_dmrg(p, index1, index2, coeff1, coeff2)
h_effect = np.eye(h_effect.shape[0]) - tau * h_effect
else:
# env1, env2, s = self.all_environments(p, index1, index2, coeff1, coeff2, tol=tol)
# dim = np.prod(s)
# h_effect = LinearOp((dim, dim), lambda a: self.update_tensor_eigs_f_handle(
# a, env1, env2, coeff1, coeff2, s, tau))
s = self.all_environments_optimized(p, index1, index2, coeff1, coeff2, tol=tol)
dim = np.prod(s)
h_effect = LinearOp((dim, dim), lambda a: self.update_tensor_eigs_f_handle_optimized(
a, s, tau))
self.mps[p] = eigs(h_effect, k=1, which='LM', v0=self.mps[p].reshape(-1, 1),
tol=tol)[1].reshape(s)
if is_real:
self.mps[p] = self.mps[p].real
if self.eig_way == 1:
self.opt_env = dict()
# ========================================================
def calculate_entanglement_spectrum(self, if_fast=True):
# NOTE: this function will central orthogonalize the MPS
_way = self.decomp_way
_center = self.center
self.decomp_way = 'svd'
if if_fast and _center > -0.5:
p0 = self.length - 1
p1 = 0
for n in range(0, self.length - 1):
if self.lm[n].size == 0:
p0 = min(p0, n)
p1 = max(p1, n)
self.correct_orthogonal_center(p0)
self.correct_orthogonal_center(p1+1)
self.correct_orthogonal_center(_center)
else:
self.correct_orthogonal_center(0)
self.correct_orthogonal_center(self.length-1)
if _center > 0:
self.correct_orthogonal_center(_center)
self.decomp_way = _way
def calculate_entanglement_entropy(self):
for i in range(0, self.length - 1):
if self.lm[i].size == 0:
self.ent[i] = -1
else:
self.ent[i] = T_module.entanglement_entropy(self.lm[i])
def reduced_density_matrix_two_body(self, p1, p2):
# p1 < p2
if self.center < p1:
v1 = self.contract_v_with_phys_l0_to_l1(self.center, p1, p2)
v2 = self.contract_v_with_phys_l0_to_l1(p2, p2, p2 - 1)
elif self.center > p2:
v1 = self.contract_v_with_phys_l0_to_l1(p1, p1, p1 + 1)
v2 = self.contract_v_with_phys_l0_to_l1(self.center, p2, p1)
else:
v1 = self.contract_v_with_phys_l0_to_l1(p1, p1, p2)
v2 = self.contract_v_with_phys_l0_to_l1(p2, p2, p2 - 1)
rho = np.tensordot(v1, v2, ([2, 3], [2, 3])).transpose(0, 2, 1, 3)
d = rho.shape[0]
rho = rho.reshape([d*d, d*d])
return rho/np.trace(rho)
def observation_s1(self, inputs):
sn, position = inputs
operator = self.operators[sn]
if self._is_save_op:
if position >= self.center:
v = self.get_effective_operators_one_body(sn, position, self.center, is_update_op=False)
else:
v = self.get_effective_operators_one_body(sn, position, self.center+1, is_update_op=False)
else:
if position > self.center:
v = T_module.bound_vec_operator_right2left(self.mps[position], operator)
v = self.contract_v_l0_to_l1(position - 1, self.center - 1, v)
else:
v = T_module.bound_vec_operator_left2right(self.mps[position], operator)
v = self.contract_v_l0_to_l1(position + 1, self.center + 1, v)
return np.trace(v)
def observation_s1_s2(self, inputs):
ssn, positions = inputs
if self._debug:
self.check_mps_norm1()
if positions[0] > positions[1]:
ssn = sort_list(ssn, [1, 0])
positions = sort_list(positions, [1, 0])
operators = [self.operators[ssn[0]], self.operators[ssn[1]]]
if self._is_save_op:
if self.center <= positions[0]:
v = self.get_effective_operator_two_body(ssn[0], ssn[1], positions[0],
positions[1], self.center,
is_update_op=False)
return np.trace(v)
elif self.center > positions[1]:
v = self.get_effective_operator_two_body(ssn[0], ssn[1], positions[0],
positions[1], self.center+1,
is_update_op=False)
return np.trace(v)
else:
vl = self.get_effective_operators_one_body(ssn[0], positions[0],
self.center, is_update_op=False)
vr = self.get_effective_operators_one_body(ssn[1], positions[1],
self.center, is_update_op=False)
return np.trace(vl.dot(vr.T))
else:
if self.center < positions[0]:
v = self.contract_v_l0_to_l1(self.center, positions[0])
else:
v = np.zeros(0)
v = T_module.bound_vec_operator_left2right(self.mps[positions[0]], operators[0], v)
v = self.contract_v_l0_to_l1(positions[0] + 1, positions[1], v)
v = T_module.bound_vec_operator_left2right(self.mps[positions[1]], operators[1], v)
if positions[1] < self.center:
v = self.contract_v_l0_to_l1(positions[1] + 1, self.center + 1, v)
return np.trace(v)
def observe_magnetization(self, sn):
mag = np.zeros((self.length, 1))
inputs = list()
for i in range(0, self.length):
if self._is_parallel:
inputs.append((sn, i))
else:
mag[i] = self.observation_s1((sn, i))
if self._is_parallel:
mag = np.array(self.pool['pool'].map(self.observation_s1, inputs))
return mag
def observe_bond_energy(self, index2, coeff2):
nh = index2.shape[0]
eb = np.zeros((nh, 1))
inputs = list()
for n in range(0, nh):
if self._is_parallel:
inputs.append((index2[n, 2:], index2[n, :2]))
else:
eb[n] = coeff2[n] * self.observation_s1_s2((index2[n, 2:], index2[n, :2]))
if self._is_parallel:
eb = np.array(self.pool['pool'].map(self.observation_s1_s2, inputs))
return eb
def observe_correlators_from_middle(self, op1, op2, ob_len=None):
if ob_len is None:
ob_len = self.length
corr = list()
pos_mid = round(self.length/2)
pos1 = pos_mid
pos2 = pos_mid + 1
n_control = 0
while pos1 > -0.1 and pos2 < self.length and ob_len > -0.1:
corr.append(self.observation_s1_s2(([op1, op2], [pos1, pos2])))
if n_control % 2 == 0:
pos1 -= 1
else:
pos2 += 1
n_control += 1
ob_len -= 1
return np.array(corr)
def norm_mps(self):
# calculate the norm of an MPS
if self._debug:
lc = self.check_orthogonal_center()
if lc != self.center:
cprint('CenterError: center should be at %d but at %d' % self.center, lc, 'magenta')
trace_stack()
if self.center < -0.5:
v = self.contract_v_l0_to_l1(0, self.length)
norm = v[0, 0]
else:
norm = np.linalg.norm(self.mps[self.center].reshape(1, -1))
return norm
def full_coefficients_mps(self, tol_memory=20):
cprint('Warning: full_coefficients_mps is used to calculate the full coefficients of the MPS', 'magenta')
tot_size_log2 = self.length * np.log2(self.phys_dim) - 5
if tot_size_log2 > tol_memory:
cprint('The memory cost of the total coefficients is too large (a lot more than %d Mb). '
'Stop calculation' % tot_size_log2, 'magenta')
cprint('If you want to calculate anyway, please input a larger \'tol_memory\'', 'cyan')
x = None
else:
s = self.mps[0].shape
x = self.mps[0].reshape(s[0]*s[1], s[2])
d0 = s[2]
for n in range(1, self.length):
s = self.mps[n].shape
x = x.dot(self.mps[n].reshape(s[0], s[1]*s[2]))
x.reshape(d0*s[1], s[2])
d0 = s[2]
return x.reshape(-1, 1)
# ===========================================================
# Checking functions
def check_orthogonal_center(self, expected_center=-2, if_print=True):
# Check if MPS has the correct center, or at the expected center
# if not, find the correct center, or recommend a new center while it is not central orthogonal
# NOTE: no central-orthogonalization in this function, only recommendation
if self.center > -0.5:
left = self.orthogonality[:self.center]
right = self.orthogonality[self.center+1:]
if not(np.prod(left == -1) and np.prod(right == 1)):
if if_print:
cprint(colored('self.center is incorrect. Change it to -1', 'magenta'))
trace_stack()
self.center = -1