-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.c
1114 lines (947 loc) · 35.8 KB
/
run.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Setting up llama2 on commodity systems with a decent performance.
All inference only code setup. Simple C Inference. Repeat of
Andrej's llama2.c Inference, picking up pieces from
GGML. Manually typed to play around and
see if there could be any performance gains that
can be realized.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#if defined _WIN32
#include "win.h"
#else
#include <sys/mman.h>
#include <unistd.h>
#include <sys/mman.h>
#include <unistd.h>
#endif
// Transformer model setup
typedef struct {
int dim;
int hidden_dim;
int n_layers;
int n_heads;
int n_kv_heads;
int vocab_size; // vocab size usually 256 byte level
int seq_len; // max seq len
} Config;
typedef struct {
// token embedding table
float *token_embedding_table; // (vocab_size, dim)
// weight for rmsnorms
float *rms_att_weight; // (layer, dim) rmsnorm weights
float *rms_ffn_weight; // (layer, dim)
// weights for matmuls note: dim == n_heads * head_size
float *wq; // (layer, dim, n_heads * head_size)
float *wk; // (layer, dim, n_kv_heads * head_size)
float *wv; // (layer, dim, n_kv_heads * head_size)
float *wo; // (later, n_heads * head_size, dim)
// weights for ffn
float *w1; // (layer, hidden_dim, dim)
float *w2; // (layer, dim, hidden_dim)
float *w3; // (layer, hidden_dim, dim)
// final rmsnorm
float *rms_final_weight; // (dim,)
float *wcls;
} TransformerWeights;
typedef struct {
// current wave of activations
float *x; // activation at current timestamp (dim,)
float *xb; // same, but inside residual branch (dim, )
float *xb2; // additional buffer for convenience (dim, )
float *hb; // buffer for hidden dim in ffn (hidden_dim, )
float *hb2; // buffer for hidden dim in ffn (hidden_dim, )
float *q; // query (dim, )
float *k; // key (dim, )
float *v; // value (dim, )
float *att; // buffer for scores/attention values (seq_len, )
float *logits; // output logits
// kv cache
float *key_cache; // (layer, seq_len, dim)
float *value_cache; // (layer, seq_len, dim)
} RunState;
typedef struct {
Config config; // the hyperparameters of the architecture (the blueprint)
TransformerWeights weights; // the weights of the model
RunState state; // buffers for the "wave" of activations in the forward pass
// some more state needed to properly clean up the memory mapping (sigh)
int fd; // file descriptor for memory mapping
float *data; // memory mapped data pointer
ssize_t file_size; // size of the checkpoint file in bytes
} Transformer;
void malloc_run_state(RunState *s, Config *p) {
// we calloc instead of malloc to keep valgrind working with us and support us
int kv_dim = (p -> dim * p->n_kv_heads)/p->n_heads;
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->k = calloc(kv_dim, sizeof(float));
s->v = calloc(kv_dim, sizeof(float));
s->att = calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q || !s->k ||
!s->v || !s->att || !s->logits || !s->key_cache || !s->value_cache) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
void free_run_state(RunState *s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->k);
free(s->v);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
void memory_map_weights(TransformerWeights *w, Config *p, float *ptr,
int shared_weights) {
int head_size = p->dim / p->n_heads;
// make sure the multiplications below are done in 64 bit to fit parameter counts
// of 13B+ models
unsigned long long n_layers = p->n_layers;
w->token_embedding_table = ptr;
ptr += p->vocab_size * p->dim;
w->rms_att_weight = ptr;
ptr += n_layers * p->dim;
w->wq = ptr;
ptr += n_layers * p->dim * (p->n_heads * head_size);
w->wk = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wv = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wo = ptr;
ptr += n_layers * (p->n_heads * head_size) * p->dim;
w->rms_ffn_weight = ptr;
ptr += n_layers * p->dim;
w->w1 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->w2 = ptr;
ptr += n_layers * p->hidden_dim * p->dim;
w->w3 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->rms_final_weight = ptr;
ptr += p->dim;
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_real(ROPE)
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_imag(ROPE)
w->wcls = shared_weights ? w->token_embedding_table : ptr;
}
void read_checkpoint(char *checkpoint, Config *config,
TransformerWeights *weights, int *fd, float **data,
ssize_t *file_size) {
FILE *file = fopen(checkpoint, "rb");
if (!file) {
fprintf(stderr, "Couldn't open file %s\n", checkpoint);
exit(EXIT_FAILURE);
}
// read in the config header
if (fread(config, sizeof(Config), 1, file) != 1) {
exit(EXIT_FAILURE);
}
// negative vocab size is hacky way of signaling unshared weights. bit yikes.
int shared_weights = config->vocab_size > 0 ? 1 : 0;
config->vocab_size = abs(config->vocab_size);
// figure out the file size
fseek(file, 0, SEEK_END); // move the file pointer to EOF
*file_size = ftell(file); // get the file size in bytes
fclose(file);
// memory map the transformer weights into data pointer
*fd = open(checkpoint, O_RDONLY); // open only in read mode
if (*fd == -1) {
fprintf(stderr, "open failed! \n");
exit(EXIT_FAILURE);
}
*data = mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0);
if (*data == MAP_FAILED) {
fprintf(stderr, "mmap failed!\n");
exit(EXIT_FAILURE);
}
float *weights_ptr = *data + sizeof(Config) / sizeof(float);
memory_map_weights(weights, config, weights_ptr, shared_weights);
}
void build_transformer(Transformer *t, char *checkpoint_path) {
// read configs and weights from ckpt
read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data,
&t->file_size);
// allocate the Runstate buffers
malloc_run_state(&t->state, &t->config);
}
void free_transformer(Transformer *t) {
// close the mmap
if (t->data != MAP_FAILED) {
munmap(t->data, t->file_size);
}
if (t->fd != -1) {
close(t->fd);
}
// free the runstate buffers
free_run_state(&t->state);
}
/*
---------------------- Setting up essential NN blocks ---------------------
*/
void rmsnorm(float *o, float *x, float *weight, int size) {
// sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float *x, int size) {
// find max value for numerical stability
float max_val = x[0];
for (int i = 0; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float *xout, float *x, float *w, int n, int d) {
// W (d,n) @ x(n, ) -> xout (d, )
// most time spent here
int i;
#pragma omp parallel for private(i)
for (i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
float *forward(Transformer *transformer, int token, int pos) {
// convienence variables
Config *p = &transformer->config;
TransformerWeights *w = &transformer->weights;
RunState *s = &transformer->state;
float *x = s->x;
int dim = p->dim;
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
int kv_mul =
(p->n_heads /
p->n_kv_heads); // int multiplier of the kv sharing in multiquery
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding to x
float *content_row = w->token_embedding_table + token * dim;
memcpy(x, content_row, dim * sizeof(*x));
// forward all layers
for (unsigned long long l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l * dim, dim);
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l * dim * dim, dim, dim);
matmul(s->k, s->xb, w->wk + l * dim * kv_dim, dim, kv_dim);
matmul(s->v, s->xb, w->wv + l * dim * kv_dim, dim, kv_dim);
// RoPE relative pos encoding: complex-vlaued rotate q and k in each head
for (int i = 0; i < dim; i += 2) {
int head_dim = i % head_size;
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);
float val = pos * freq;
float fcr = cosf(val);
float fci = sinf(val);
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1=q only
for (int v = 0; v < rotn; v++) {
float *vec =
v == 0 ? s->q : s->k; // the vector to rotate (query or key)
float v0 = vec[i];
float v1 = vec[i + 1];
vec[i] = v0 * fcr - v1 * fci;
vec[i + 1] = v0 * fci + v1 * fcr;
}
}
// save key, value at this time step (pos) to our kv cache
int loff = l * p->seq_len * kv_dim; // kv cache later offset for convenience
float *key_cache_row = s->key_cache + loff + pos * kv_dim;
float *value_cache_row = s->value_cache + loff + pos * kv_dim;
memcpy(key_cache_row, s->k, kv_dim * sizeof(*key_cache_row));
memcpy(value_cache_row, s->v, kv_dim * sizeof(*value_cache_row));
// multihead attn
int h;
#pragma omp parallel for private(h)
for (h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float *q = s->q + h * head_size;
// attention scores for this head
float *att = s->att + h * p->seq_len;
// iterate over all timestamps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestamp
float *k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// calcuate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to attention buffer
att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(att, pos + 1);
// weighted sum of values, store back into xb
float *xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float *v =
s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// get the attention weight for this timestep
float a = att[t];
// accumulate the weighted value into xb
for (int i = 0; i < head_size; i++) {
xb[i] += a * v[i];
}
}
}
// final matmul to get the output of attention
matmul(s->xb2, s->xb, w->wo + l * dim * dim, dim, dim);
// residual connection back into x
for (int i = 0; i < dim; i++) {
x[i] += s->xb2[i];
}
// ffn rms
rmsnorm(s->xb, x, w->rms_ffn_weight + l * dim, dim);
// Now for FFN in Pytorch we have: self.w2(F.silu(self.w1(x))*self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l * dim * hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l * dim * hidden_dim, dim, hidden_dim);
// SwiGLU non linearity
for (int i = 0; i < hidden_dim; i++) {
float val = s->hb[i];
// silu(x) = x * sigma(x), where sigma(x) is logistic sigmoid
val *= (1.0f / (1.0f + expf(-val)));
// elementwise multiply with w3(x)
val *= s->hb2[i];
s->hb[i] = val;
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l * dim * hidden_dim, hidden_dim, dim);
// residual connection
for (int i = 0; i < dim; i++) {
x[i] += s->xb[i];
}
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classify into logits
matmul(s->logits, x, w->wcls, p->dim, p->vocab_size);
return s->logits;
}
// ----------------------------------------------------------------------
// BPE encoding tokenizer translation setup strings -> tokens and vice versa
typedef struct {
char *str;
int id;
} TokenIndex;
typedef struct {
char **vocab;
float *vocab_scores;
TokenIndex *sorted_vocab;
int vocab_size;
unsigned int max_token_length;
unsigned char byte_pieces[512];
} Tokenizer;
int compare_tokens(const void *a, const void *b) {
return strcmp(((TokenIndex *)a)->str, ((TokenIndex *)b)->str);
}
void build_tokenizer(Tokenizer *t, char *tokenizer_path, int vocab_size) {
// should have written vocab_size into the tokenizer file
t->vocab_size = vocab_size;
// malloc space to hold the scores and the strings
t->vocab = (char **)malloc(vocab_size * sizeof(char *));
t->vocab_scores = (float *)malloc(vocab_size * sizeof(char *));
t->sorted_vocab = NULL; // lazy init
for (int i = 0; i < 256; i++) {
t->byte_pieces[i * 2] = (unsigned char)i;
t->byte_pieces[i * 2 + 1] = '\0';
}
// read in the file
FILE *file = fopen(tokenizer_path, "rb");
if (!file) {
fprintf(stderr, "Couldn't load %s \n", tokenizer_path);
exit(EXIT_FAILURE);
}
if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) {
fprintf(stderr, "failed read\n");
exit(EXIT_FAILURE);
}
int len;
for (int i = 0; i < vocab_size; i++) {
if (fread(t->vocab_scores + i, sizeof(float), 1, file) != 1) {
fprintf(stderr, "failed read\n");
exit(EXIT_FAILURE);
}
if (fread(&len, sizeof(int), 1, file) != 1) {
fprintf(stderr, "failed read\n");
exit(EXIT_FAILURE);
}
t->vocab[i] = (char *)malloc(len + 1);
if (fread(t->vocab[i], len, 1, file) != 1) {
fprintf(stderr, "failed read\n");
exit(EXIT_FAILURE);
}
t->vocab[i][len] = '\0'; // add the string terminating token
}
fclose(file);
}
void free_tokenizer(Tokenizer *t) {
for (int i = 0; i < t->vocab_size; i++) {
free(t->vocab[i]);
}
free(t->vocab);
free(t->vocab_scores);
free(t->sorted_vocab);
}
char *decode(Tokenizer *t, int prev_token, int token) {
char *piece = t->vocab[token];
// following BOS (1) token, sentencepiece decoder strips any leading
// whitespace
if (prev_token == 1 && piece[0] == ' ') {
piece++;
}
// careful, some tokens designate raw bytes and look like ex: <0x01>
// parse this and convert and return the actual byte
unsigned char byte_val;
if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) {
piece = (char *)t->byte_pieces + byte_val * 2;
}
return piece;
}
void safe_printf(char *piece) {
// piece might be a raw byte token, and we only want to print printable chars
// or whitespace because some of the other bytes can be various control codes,
// backspace, etc.
if (piece == NULL) {
return;
}
if (piece[0] == '\0') {
return;
}
if (piece[1] == '\0') {
unsigned char byte_val = piece[0];
if (!(isprint(byte_val) || isspace(byte_val))) {
return; // bad byte, don't print it
}
}
printf("%s", piece);
}
int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) {
// efficiently find the perfect match for str in vocab, return its index or -1
// if not found
TokenIndex tok = {.str = str}; // acts as the key to search for
TokenIndex *res = bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex),
compare_tokens);
return res != NULL ? res->id : -1;
}
void encode(Tokenizer *t, char *text, int8_t bos, int8_t eos, int *tokens,
int *n_tokens) {
// ecnode the string text input into an upper bound preallocated tokens[]
// array bos != 0 means prepend BOS token (=1), eos != 0 means append the EOS
// token (=2)
if (text == NULL) {
fprintf(stderr, "Cannot encode NULL Text \n");
exit(EXIT_FAILURE);
}
if (t->sorted_vocab == NULL) {
// lazy malloc and sort vocab
t->sorted_vocab = malloc(t->vocab_size * sizeof(TokenIndex));
for (int i = 0; i < t->vocab_size; i++) {
t->sorted_vocab[i].str = t->vocab[i];
t->sorted_vocab[i].id = i;
}
qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens);
}
// create a temp buffer that will store merge candidates of always 2
// consequtive tokens 2* for concat, +1 for null terminator +2 for UTF8 (in
// case max_token_length is 1)
char *str_buffer = malloc((t->max_token_length * 2 + 1 + 2) * sizeof(char));
size_t str_len = 0;
// start at 0 tokens
*n_tokens = 0;
// add optional BOS (=1) token if needed
if (bos)
tokens[(*n_tokens)++] = 1;
// add_dummy_prefix is true by default
// so prepend a dummy prefix token to the input string, but only if text!= ""
// TODO: pretty sure this isn't correct in general case, more to be read from
// sentencepiece to find out what's going on
if (text[0] != '\0') {
int dummy_prefix = str_lookup(" ", t->sorted_vocab, t->vocab_size);
tokens[(*n_tokens)++] = dummy_prefix;
}
// UTF-8 Time and its messy. Reference from Wikipedia:
// code point <-> UTF8 conversion
// First code point last code point Byte1 Byte2 Byte3 Byte4
// U+0000 U+007F 0xxxxxxx
// U+0080 U+07FF 110xxxxx 10xxxxxx
// U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
// U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// process the raw UTF-8 bye sequence of input string
for (char *c = text; *c != '\0'; c++) {
// reset buffer if the current byte is ASCII or a leading byte
// 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the
// rest 0x80 is 10000000 in UTF-8, all continuation bytes start with "10" in
// first two bits so in English this is: "if this byte is not a continuation
// byte"
if ((*c & 0xC0) != 0x80) {
// this byte must be either a leading byte (11...) or an ASCII char
// (0x...)
// => reset our location, as we're starting a new UTF-8 codepoint
str_len = 0;
}
// append the current byte to the buffer
str_buffer[str_len++] =
*c; // ++ is post increment, incremented after this line
str_buffer[str_len] = '\0';
// while the next character is a continuation byte, continue appending
// but if there are too many of them, just stop to avoid overrunning
// str_buffer size.
if ((*(c + 1) & 0xC0) == 0x80 && str_len < 4) {
continue;
}
// ok c+1 isn't a continuation byte, so we've read in full codepoint
int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size);
if (id != -1) {
// we found this codepoint in vocab, add it as a token
tokens[(*n_tokens)++] = id;
} else {
// byte_fallback encoding: just encode each byte as a token
// +3 is here because the first 3 vocab elements are <unk>, <s>, </s>
// so the individual btes only start at index 3
for (int i = 0; i < str_len; i++) {
tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3;
}
}
str_len = 0; // protect against a sequence of stray UTF8 continuation bytes
}
// merge the best consecutive pair each iteration, according to scores in
// vocab_scores
while (1) {
float best_score = -1e10;
int best_id = -1;
int best_idx = -1;
for (int i = 0; i < (*n_tokens - 1); i++) {
// check if we can merge the pair (tokens[i], tokens[i+1])
sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i + 1]]);
int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size);
if (id != -1 && t->vocab_scores[id] > best_score) {
// this merge pair exists in vocab! record its score and position
best_score = t->vocab_scores[id];
best_id = id;
best_idx = i;
}
}
if (best_idx == -1) {
break; // couldn't find anymore pairs to merge, so we're done
}
// merge the consecutive pair (best_idx, best_idx +1) into new token best_id
tokens[best_idx] = best_id;
// delete token at position best_idx + 1, shift the entire sequence back 1
for (int i = best_idx + 1; i < (*n_tokens - 1); i++) {
tokens[i] = tokens[i + 1];
}
(*n_tokens)--; // token length decreased
}
// add optional EOS (=2) token if desired
if (eos)
tokens[(*n_tokens)++] = 2;
free(str_buffer);
}
// ---------------------------------------------------------------------------------
// Sampler which takes logits and returns a sampled token
// sampling can be done in few ways: greedy argmax sampling, top-p sampling
typedef struct {
float prob;
int index;
} ProbIndex; // struct for sorting probabilities during top-p sampling
typedef struct {
int vocab_size;
ProbIndex *probindex; // buffer used in top-p sampling
float temperature;
float topp;
unsigned long long rng_state;
} Sampler;
int sample_argmax(float *probabilities, int n) {
// return the index that has the highest probability
int max_i = 0;
float max_p = probabilities[0];
for (int i = 1; i < n; i++) {
if (probabilities[i] > max_p) {
max_i = i;
max_p = probabilities[i];
}
}
return max_i;
}
int sample_multi(float *probabilites, int n, float coin) {
// sample index from probabilities (they must sum to 1)
// coin is a random number in [0, 1), usually from random_f32()
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilites[i];
if (coin < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int compare(const void *a, const void *b) {
ProbIndex *a_ = (ProbIndex *)a;
ProbIndex *b_ = (ProbIndex *)b;
if (a_->prob > b_->prob)
return -1;
if (a_->prob < b_->prob)
return 1;
return 0;
}
int sample_topp(float *probabilities, int n, float topp, ProbIndex *probindex,
float coin) {
// top p sampling (or nucleus sampling) samples from the smallest set of
// tokens that exceed probability topp. This way we never sample tokens that
// have very low probabilities are less likely to go "off the rails" coin is
// random number in [0,1) usually from random_f32()
int n0 = 0;
// quicksort indices in desc order of probabilities
// values smaller than (1-topp)/(n-1) cannot be a part of the result
// so for efficiency we crop these out as candidates before sorting
const float cutoff = (1.0f - topp) / (n - 1);
for (int i = 0; i < n; i++) {
if (probabilities[i] >= cutoff) {
probindex[n0].index = i;
probindex[n0].prob = probabilities[i];
n0++;
}
}
qsort(probindex, n0, sizeof(ProbIndex), compare);
// truncate the list where cumulative probability exceeds topp
float cumulative_prob = 0.0f;
int last_idx = n0 - 1; // incase of rounding errors consider all elements
for (int i = 0; i < n0; i++) {
cumulative_prob += probindex[i].prob;
if (cumulative_prob > topp) {
last_idx = i;
break; // we've exceeded topp by including last_idx
}
}
// sample from truncated list
float r = coin * cumulative_prob;
float cdf = 0.0f;
for (int i = 0; i <= last_idx; i++) {
cdf += probindex[i].prob;
if (r < cdf) {
return probindex[i].index;
}
}
return probindex[last_idx].index; // incase of rounding errors
}
void build_sampler(Sampler *sampler, int vocab_size, float temperature,
float topp, unsigned long long rng_seed) {
sampler->vocab_size = vocab_size;
sampler->temperature = temperature;
sampler->topp = topp;
sampler->rng_state = rng_seed;
// buffer only used with nucleus sampling; may not need but its small
sampler->probindex = malloc(sampler->vocab_size * sizeof(ProbIndex));
}
void free_sampler(Sampler *sampler) { free(sampler->probindex); }
unsigned int random_u32(unsigned long long *state) {
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
*state ^= *state >> 12;
*state ^= *state << 25;
*state ^= *state >> 27;
return (*state * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32(unsigned long long *state) {
return (random_u32(state) >> 8) / 16777216.0f;
}
int sample(Sampler *sampler, float *logits) {
// sample the token given the logits and some hparams
int next;
if (sampler->temperature == 0.0f) {
// greedy argmax sampling: take the token with highest probs
next = sample_argmax(logits, sampler->vocab_size);
} else {
// apply the temperature to the logits
for (int q = 0; q < sampler->vocab_size; q++) {
logits[q] /= sampler->temperature;
}
// apply softmax to logits to get the probs for the next token
softmax(logits, sampler->vocab_size);
// flip a (float) coin (this is our source of entropy for sampling)
float coin = random_f32(&sampler->rng_state);
// we sample from this distribution to get the next token
if (sampler->topp <= 0 || sampler->topp >= 1) {
// simply sample from the predicted probability distribution
next = sample_multi(logits, sampler->vocab_size, coin);
} else {
// top -p (nucleus) sampling, clamping the least likely tokens to zero
next = sample_topp(logits, sampler->vocab_size, sampler->topp,
sampler->probindex, coin);
}
}
return next;
}
// ------------------------------------------------------------------------------------
// utilities time
long time_in_ms() {
// return time in milliseconds, for benchmarking the model speed
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return time.tv_sec * 1000 + time.tv_nsec / 100000;
}
// ------------------------------------------------------------------------------------
// gen loop
void generate(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler,
char *prompt, int steps) {
char *empty_prompt = "";
if (prompt == NULL) {
prompt = empty_prompt;
}
// encode the string prompt into tokens sequence
int num_prompt_tokens = 0;
int *prompt_tokens = (int *)malloc((strlen(prompt) + 3) *
sizeof(int)); // +3 for '\0', ?BOS, ?EOS
encode(tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens);
if (num_prompt_tokens < 1) {
fprintf(stderr, "something is wrong, expected atleast one prompt token \n");
exit(EXIT_FAILURE);
}
// start the main loop
long start = 0; // used to init after first iteration
int next;
int token = prompt_tokens[0]; // kick off wiht first token in prompt
int pos = 0; // pos in the seq
while (pos < steps) {
// forward transformer to get logits for next token
float *logits = forward(transformer, token, pos);
// advance state machine
if (pos < num_prompt_tokens - 1) {
// if we're still processing the input prompt, force the next prompt token
next = prompt_tokens[pos + 1];
} else {
// otherwise sample the next token from logits
next = sample(sampler, logits);
}
pos++;
// data dependent terminating condition; BOS token delimits sequences
if (next == 1)
break;
// print the token as string, decode it with next tokenizer object
char *piece = decode(tokenizer, token, next);
safe_printf(piece); // same as printf("%s", piece), but skips unsafe bytes
fflush(stdout);
token = next;
// init the time here because the first iteration can be slower
if (start == 0) {
start = time_in_ms();
}
}
printf("\n");
// report tokens/sec (pos -1 because timer starts after first iteration)
if (pos > 1) {
long end = time_in_ms();
fprintf(stderr, "achieved tok/s: %f\n",
(pos - 1) / (double)(end - start) * 1000);
}
free(prompt_tokens);
}
void read_stdin(const char* guide, char* buffer, size_t bufsize) {
// read a line from stdin, up to but not including \n
printf("%s", guide);
if (fgets(buffer, bufsize, stdin) != NULL) {
size_t len = strlen(buffer);
if (len > 0 && buffer[len - 1] == '\n') {
buffer[len - 1] = '\0'; // strip newline
}
}
}
// hacky chat
void chat(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler,
char *cli_user_prompt, char *cli_system_prompt, int steps) {
// buffers for reading the system prompt and user prompt from stdin
// you'll notice they are soomewhat haphazardly and unsafely set atm
char system_prompt[512];
char user_prompt[512];
char rendered_prompt[1152];
int num_prompt_tokens = 0;
int* prompt_tokens = (int*)malloc(1152 * sizeof(int));
int user_idx;
// start the main loop
int8_t user_turn = 1; // user starts
int next; // will store the next token in the sequence
int token; // stores the current token to feed into the transformer
int prev_token;
int pos = 0; // position in the sequence
while (pos < steps) {
// when it is the user's turn to contribute tokens to the dialog...
if (user_turn) {
// get the (optional) system prompt at position 0
if (pos == 0) {
// at position 0, the user can also contribute a system prompt
if (cli_system_prompt == NULL) {
// system prompt was not passed in, attempt to get it from stdin
read_stdin("Enter system prompt (optional): ", system_prompt, sizeof(system_prompt));
} else {
// system prompt was passed in, use it
strcpy(system_prompt, cli_system_prompt);
}
}
// get the user prompt
if (pos == 0 && cli_user_prompt != NULL) {
// user prompt for position 0 was passed in, use it
strcpy(user_prompt, cli_user_prompt);
} else {
// otherwise get user prompt from stdin
read_stdin("User: ", user_prompt, sizeof(user_prompt));
}
// render user/system prompts into the Llama 2 Chat schema
if (pos == 0 && system_prompt[0] != '\0') {
char system_template[] = "[INST] <<SYS>>\n%s\n<</SYS>>\n\n%s [/INST]";
sprintf(rendered_prompt, system_template, system_prompt, user_prompt);
} else {
char user_template[] = "[INST] %s [/INST]";
sprintf(rendered_prompt, user_template, user_prompt);
}
// encode the rendered prompt into tokens
encode(tokenizer, rendered_prompt, 1, 0, prompt_tokens, &num_prompt_tokens);
user_idx = 0; // reset the user index
user_turn = 0;
printf("Assistant: ");
}
// determine the token to pass into the transformer next
if (user_idx < num_prompt_tokens) {
// if we are still processing the input prompt, force the next prompt token
token = prompt_tokens[user_idx++];