-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathtrain_online.py
51 lines (41 loc) · 1.55 KB
/
train_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import sys
import numpy as np
import theano as th
import utils
import nnet.neuralnet as nn
from scribe.scribe import Scribe
################################ Initialize
args = utils.read_args(sys.argv[1:])
num_samples, num_epochs = args['num_samples'], args['num_epochs']
scribe_args, nnet_args = args['scribe_args'], args['nnet_args']
print('\nArguments:'
'\nFloatX : {}'
'\nNum Epochs : {}'
'\nNum Samples : {}'
'\n'.format(th.config.floatX, num_epochs, num_samples))
scriber = Scribe(**scribe_args)
printer = utils.Printer(scriber.alphabet.chars)
print(scriber)
print('Building the Network')
ntwk = nn.NeuralNet(scriber.nDims, scriber.nClasses, **nnet_args)
print(ntwk)
################################
print('Training the Network')
for epoch in range(num_epochs):
ntwk.update_learning_rate(epoch)
for samp in range(num_samples):
x, y1 = scriber.get_sample()
if len(y1) < 2:
continue
y = utils.insert_blanks(y1, scriber.nClasses)
cst, pred, forward_probs = ntwk.trainer(x, y)
if np.isinf(cst):
printer.show_all(y, x, pred, (forward_probs > 1e-20, 'Forward probabilities:'))
print('Exiting on account of Inf Cost...')
break
if samp == 0:
pred, hidden = ntwk.tester(x)
print('Epoch:{:6d} Cost:{:.3f}'.format(epoch, float(cst)))
printer.show_all(y, x, pred,
(forward_probs > 1e-20, 'Forward probabilities:'),
((hidden + 1)/2, 'Hidden Layer:'))