-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreg.py
40 lines (33 loc) · 1.63 KB
/
reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
def batch_jacobian(outputs, inputs, create_graph=False):
"""Computes the jacobian of outputs with respect to inputs
:param outputs: tensor for the output of some function
:param inputs: tensor for the input of some function (probably a vector)
:param create_graph: set True for the resulting jacobian to be differentible
:returns: a tensor of size (outputs.size() + inputs.size()) containing the
jacobian of outputs with respect to inputs
"""
jac = outputs.new_zeros(outputs.size() + inputs.size()
).view((-1,) + inputs.size())
for i, out in enumerate(outputs.view(-1)):
col_i = torch.autograd.grad(out, inputs, retain_graph=True,
create_graph=create_graph, allow_unused=True)[0]
if col_i is None:
# this element of output doesn't depend on the inputs, so leave gradient 0
continue
else:
jac[i] = col_i
if create_graph:
jac.requires_grad_()
return jac.view(outputs.size() + inputs.size())
def parametriser_regulariser(x, h, theta, g, num_concepts=5):
batch_size = x.shape[0]
grad_f = torch.zeros(batch_size, num_concepts, 1, 28, 28)
for i in range(num_concepts):
grad_f[:, i] = torch.autograd.grad(g[:, i].sum(), x, retain_graph=True)[0].data
# grad_f = torch.autograd.grad(g, x)
jacob_h = batch_jacobian(h, x)
# theta_times_jacob_h = torch.einsum('boi,bo->bi', jacob_h, theta)
theta_times_jacob_h = torch.einsum('ijiklm,ij->ijklm', jacob_h, theta)
reg = torch.sum((grad_f.cuda() - theta_times_jacob_h.cuda()) ** 2)
return reg