-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·226 lines (190 loc) · 7.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import random
import traceback
from functools import partial
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow as tf
import tqdm
import wandb
from absl import app, flags, logging
from flax.training import checkpoints
from ml_collections import config_flags
from jaxrl_m.agents import agents
from jaxrl_m.common.common import shard_batch
from jaxrl_m.common.wandb import WandBLogger
from jaxrl_m.data.dataset import WidowXDataset
from jaxrl_m.utils.timer_utils import Timer
from jaxrl_m.vision import encoders
try:
from jax_smi import initialise_tracking # type: ignore
initialise_tracking()
except ImportError:
pass
FLAGS = flags.FLAGS
flags.DEFINE_string("exp_name", "", "Experiment name.")
flags.DEFINE_list("tag", list(), "Name of experiment")
flags.DEFINE_string("group", None, "Group of the wandb experiments")
flags.DEFINE_bool("debug", False, "Debug config")
config_flags.DEFINE_config_file(
"config",
None,
"File path to the training hyperparameter configuration.",
lock_config=False,
)
config_flags.DEFINE_config_file(
"data_config",
None,
"File path to the bridgedata configuration.",
lock_config=False,
)
def main(_):
devices = jax.local_devices()
num_devices = len(devices)
assert FLAGS.config.batch_size % num_devices == 0
# we shard the leading dimension (batch dimension) accross all devices evenly
sharding = jax.sharding.PositionalSharding(devices)
shard_fn = partial(shard_batch, sharding=sharding)
# prevent tensorflow from using GPUs
tf.config.set_visible_devices([], "GPU")
# set up wandb and logging
wandb_config = WandBLogger.get_default_config()
wandb_config.update(
{
"project": f"jaxrl_{FLAGS.config.agent}_autonomous_data",
"exp_descriptor": FLAGS.exp_name,
"tag": FLAGS.tag,
"group": FLAGS.group,
}
)
wandb_logger = WandBLogger(
wandb_config=wandb_config,
variant=FLAGS.config.to_dict(),
debug=FLAGS.debug,
)
save_dir = tf.io.gfile.join(
FLAGS.config.save_dir,
wandb_logger.config.project,
f"{wandb_logger.config.exp_descriptor}_{wandb_logger.config.unique_identifier}",
)
# load datasets
random.seed(FLAGS.config.seed)
train_paths = []
if FLAGS.data_config.sampling_weights.pretraining_data > 0:
train_paths += [FLAGS.data_config.pretraining_data]
if FLAGS.data_config.sampling_weights.autonomous_data_successes > 0:
train_paths += [FLAGS.data_config.autonomous_data]
if FLAGS.data_config.sampling_weights.autonomous_data_failures > 0:
train_paths += [FLAGS.data_config.autonomous_data]
# create sample weights for training
train_sample_weights = [
FLAGS.data_config.sampling_weights["pretraining_data"],
FLAGS.data_config.sampling_weights["autonomous_data_successes"],
FLAGS.data_config.sampling_weights["autonomous_data_failures"],
]
train_sample_weights = [
weight for weight in train_sample_weights if weight > 0
] # remove 0s from the sample weights
assert (
sum(train_sample_weights) == 1.0
), f"Sample weights must sum to 1.0, got {sum(train_sample_weights)}"
# pick out the splits needed from the dataset
train_data_splits = []
if FLAGS.data_config.sampling_weights.pretraining_data > 0:
train_data_splits.append("train")
if FLAGS.data_config.sampling_weights.autonomous_data_successes > 0:
train_data_splits.append("success")
if FLAGS.data_config.sampling_weights.autonomous_data_failures > 0:
train_data_splits.append("failure")
train_data = WidowXDataset(
train_paths,
FLAGS.config.seed,
batch_size=FLAGS.config.batch_size,
train=True,
sample_weights=train_sample_weights,
data_splits=train_data_splits,
**FLAGS.config.dataset_kwargs,
)
val_data = WidowXDataset(
FLAGS.data_config.pretraining_data,
FLAGS.config.seed,
batch_size=FLAGS.config.batch_size,
train=False,
sample_weights=None,
data_splits=["val"],
**FLAGS.config.dataset_kwargs,
)
train_data_iter = map(shard_fn, train_data.iterator())
example_batch = next(train_data_iter)
logging.info(f"Batch size: {example_batch['observations']['image'].shape[0]}")
logging.info(f"Number of devices: {num_devices}")
logging.info(
f"Batch size per device: {example_batch['observations']['image'].shape[0] // num_devices}"
)
# define encoder
encoder_def = encoders[FLAGS.config.encoder](**FLAGS.config.encoder_kwargs)
# initialize agent
rng = jax.random.PRNGKey(FLAGS.config.seed)
rng, construct_rng = jax.random.split(rng)
agent = agents[FLAGS.config.agent].create(
rng=construct_rng,
observations=example_batch["observations"],
goals=example_batch["goals"],
actions=example_batch["actions"],
encoder_def=encoder_def,
**FLAGS.config.agent_kwargs,
)
if FLAGS.config.get("resume_path", "") != "":
agent = checkpoints.restore_checkpoint(FLAGS.config.resume_path, target=agent)
# replicate agent across devices
# need the jnp.array to avoid a bug where device_put doesn't recognize primitives
agent = jax.device_put(jax.tree_map(jnp.array, agent), sharding.replicate())
timer = Timer()
for i in tqdm.tqdm(range(int(FLAGS.config.num_steps - agent.state.step))):
try:
timer.tick("total")
timer.tick("dataset")
batch = shard_batch(next(train_data_iter), sharding)
timer.tock("dataset")
timer.tick("train")
agent, update_info = agent.update(batch)
timer.tock("train")
if agent.state.step % FLAGS.config.eval_interval == 0:
logging.info("Validation...")
timer.tick("val")
# plot debug metrics of validation data
val_metrics = []
j = 0
val_iter = map(shard_fn, val_data.iterator())
for val_batch in val_iter:
rng, val_rng = jax.random.split(rng)
val_metrics.append(agent.get_debug_metrics(val_batch, seed=val_rng))
j += 1
if j >= FLAGS.config.num_val_batches:
break
val_metrics = jax.tree_map(lambda *xs: np.mean(xs), *val_metrics)
wandb_logger.log({"validation": val_metrics}, step=agent.state.step)
timer.tock("val")
if agent.state.step % FLAGS.config.save_interval == 0:
logging.info("Saving checkpoint...")
checkpoint_path = checkpoints.save_checkpoint(
save_dir, agent, step=agent.state.step, keep=1e6
)
logging.info("Saved checkpoint to %s", checkpoint_path)
timer.tock("total")
if agent.state.step % FLAGS.config.log_interval == 0:
update_info = jax.device_get(update_info)
wandb_logger.log({"training": update_info}, step=agent.state.step)
wandb_logger.log(
{"timer": timer.get_average_times()}, step=agent.state.step
)
except tf.errors.OpError as e:
# sometimes tfds will have trouble communicating with cloud storage bucket for some reason...
print(f"Error in iteration {i}: {e}")
print("Skipping to next iteration...")
traceback.print_exc()
# avoid timer tock errors
timer.force_tock_everything()
continue
if __name__ == "__main__":
app.run(main)