-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy path12-logical_vectors.Rmd
400 lines (295 loc) · 11.7 KB
/
12-logical_vectors.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# (PART\*) Transform {-}
```{r, include=F}
library(dplyr)
library(nycflights13)
```
# Logical Vectors
**Learning objectives:**
- Logical vectors: understanding what they are and why we use them
- Knowing how to generate logical vectors (variables)
- Knowing how to make use of logical vectors (variables):
- to filter data
- to create new variables
- to create summaries
- Understanding the effect of missing values in these operations
## What and why {-}
- This is all about conditions on data values: they return `TRUE` or `FALSE`.
This vector of `TRUE`/`FALSE` values is a logical vector.
- These conditions -- hence the resulting logical vectors -- play an important role in filtering, mutating and summarizing dataframe columns.
## Definition {-}
Logical vector: vector of `TRUE`, `FALSE` and/or `NA` values.
## Challenging: `NA` values {-}
The most tricky part of **operations** with logical vectors is the effect of missing values.
## Operations overview {-}
- Operations that don't change vector lengths
- comparisons: **generate a logical vector** from a non-logical vector
- boolean algebra: **generate a logical vector** from other logical vectors
- conditional transformations: generate a new vector **from (hierarchical) conditions** (~ logical vectors ~ comparisons)
- **Subsetting** vectors with a logical vector
- **Summarizing** logical vectors
## Generating a logical vector (1) {-}
- either by doing (vectorized) **comparisons**
operators:
- one-to-one: `==`, `!=`, `<`, `<=`, `>`, `>=`
- one-to-many: `%in%`
\
Comparisons are often the way that logical vectors arise, i.e. during exploration, cleaning and analysis
- ... unless the logical vector is already provided, e.g. the observed variable is boolean.
## Generating a logical vector (2) {-}
```{r}
flights |>
mutate(daytime = dep_time > 600, .keep = "used")
```
## Generating a logical vector (3) {-}
```{r}
flights |>
mutate(daytime = dep_time > 600, .keep = "used") |>
filter(daytime)
```
## Generating a logical vector (4) {-}
```{r}
1:12 %in% c(1, 5, 11)
```
## Generating a logical vector (5) {-}
A comparison _**is**_ a logical vector...
```{r}
class(flights$dep_time > 600)
length(flights$dep_time > 600)
head(flights$dep_time > 600)
```
## Generating a logical vector (6) {-}
... so the logical vector does not have to be stored in order to filter data -- it is created on the fly:
```{r}
flights |>
filter(dep_time > 600)
```
## Generating a logical vector (7) {-}
- either by doing (vectorized) comparisons (see before)
- or by **combining** logical vectors or comparisons = **boolean algebra**
- operators: `&`, `|`, `!`, `xor()`
- `{magrittr}` (through `{dplyr}`) provides the aliases `and()`, `or()`, `not()`
\
In numerical operations, `FALSE` is 0 and `TRUE` is 1.
Therefore:
- `&` can be mimicked by `pmin()`
- `|` can be mimicked by `pmax()`
## Generating a logical vector (8) {-}
Boolean operators:
![](images/14_venn_diagrams.png)
## Generating a logical vector (9) {-}
```{r}
flights |>
mutate(
daytime = dep_time > 600 & dep_time < 2000,
.keep = "used"
)
```
## Missing values (1) {-}
In most cases an `NA` value (vector element) is regarded '_missing so we can't (always) know the outcome_':
- hence `NA`in **comparisons** will always return `NA`.
- so `x == NA` will just return `NA` for _all_ elements.
- check for missing values with **`is.na()`**: `TRUE` for missing values and `FALSE` for everything else
## Missing values (2) {-}
```{r}
c(TRUE, NA, FALSE) == NA # NOT useful!!
is.na(c(TRUE, NA, FALSE))
is.na(c(1, NA, 3))
```
## Missing values (3) {-}
In most cases an `NA` value (vector element) is regarded '_missing so we can't (always) know the outcome_':
- `NA`in comparisons will always return `NA` (see before).
- `NA` in **boolean algebra**: sometimes the outcome is known, sometimes not (hence `NA`):
- `TRUE & NA` is `NA` but `FALSE & NA` is `FALSE`
- `TRUE | NA` is `TRUE` but `FALSE | NA` is `NA`
## Missing values (4) {-}
```{r}
c(TRUE, FALSE) & NA
c(TRUE, FALSE) | NA
```
## Missing values (5) {-}
But `%in%` works differently:
- `NA %in% NA` returns `TRUE`: here `NA` is just regarded as a special value
```{r}
flights |>
filter(dep_time %in% c(NA, 0800))
```
## Conditional transformations (1) {-}
Aim: generate a vector where each element is determined by the value of one or multiple conditions (~ comparisons).
- one condition: use `if_else()`
- `if_else(condition, true, false, missing = NULL)`
- multiple (hierarchical) conditions: use `case_when(..., .default = NULL)`.
- the _first_ condition that is `TRUE` for an element determines the outcome for that element.
## Conditional transformations (2) {-}
```{r}
x <- c(-3:3, NA)
if_else(x > 0, "+ve", "-ve", "???")
```
## Conditional transformations (3) {-}
```{r}
x <- c(-3:3, NA)
case_when(
x == 0 ~ "0",
x < 0 ~ "-ve",
x > 0 ~ "+ve",
is.na(x) ~ "???"
)
```
## Conditional transformations (4) {-}
The different outcomes must be **compatible types**!
Some examples:
- numerical and logical
- strings and factors.
- `NA` is compatible with everything.
## Subsetting vectors {-}
I.e. keep only a subset of a vector, drop the rest, based on some condition.
- This is base R!
- Put a logical vector in the brackets (obtained by one of the previous techniques; often comparison)
E.g.:
```r
condition <- flights$arr_delay > 0
flights$arr_delay[condition]
flights$dep_time[condition]
# or just:
flights$dep_time[flights$arr_delay > 0]
```
## Summarizing logical vectors (1) {-}
- Summarizing the whole vector:
- `any()`, `all()`: return a logical
- `sum()`, `mean()`: return a numeric
- Summarizing a subset:
- apply a summary function to a subsetted vector
- If `NA` values are present, the summary result will be `NA`, BUT the `NA` values can also be ignored with: **`na.rm = TRUE`**.
## Summarizing logical vectors (2) {-}
```{r}
flights |>
summarize(
all_delayed = all(dep_delay <= 60, na.rm = TRUE),
any_long_delay = any(arr_delay >= 300, na.rm = TRUE),
.by = c(year, month, day)
)
```
## Summarizing logical vectors (3) {-}
```{r}
flights |>
summarize(
proportion_delayed = mean(dep_delay <= 60, na.rm = TRUE),
count_long_delay = sum(arr_delay >= 300, na.rm = TRUE),
.by = c(year, month, day)
)
```
## Summarizing logical vectors (4) {-}
```{r}
flights |>
summarize(
behind = mean(arr_delay[arr_delay > 0], na.rm = TRUE),
ahead = mean(arr_delay[arr_delay < 0], na.rm = TRUE),
n = n(),
.by = c(year, month, day)
)
```
## Meeting Videos
### Cohort 5
`r knitr::include_url("https://www.youtube.com/embed/rsRImj294pM")`
<details>
<summary> Meeting chat log </summary>
```
00:39:35 Jon Harmon (jonthegeek): .Machine$double.eps
00:40:36 Jon Harmon (jonthegeek): > .Machine$integer.max
[1] 2147483647
00:41:23 Federica Gazzelloni: ?`.Machine`
00:42:11 Ryan Metcalf: Some really fun reading about CPU “inner” workings: https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture/
00:42:35 Jon Harmon (jonthegeek): > typeof(.Machine$integer.max + 1)
[1] "double"
00:42:55 Jon Harmon (jonthegeek): > .Machine$integer.max + 1L
[1] NA
Warning message:
In .Machine$integer.max + 1L : NAs produced by integer overflow
00:43:52 Becki R. (she/her): thanks for the link, Ryan!
00:44:44 Jon Harmon (jonthegeek): > sqrt(2)**2 == 2
[1] FALSE
00:45:16 Jon Harmon (jonthegeek): > dplyr::near(sqrt(2)**2, 2)
[1] TRUE
00:57:52 Ryan Metcalf: Not directly related to Cache or RAM….But similar. It is where you get FAT, FAT32, NTFS, ExFat, EXT, EXT3, etc…etc… there are hundreds of file allocation.
00:59:29 Sandra Muroy: thanks Ryan!
01:02:08 Becki R. (she/her): I'm finding the info on computer architecture (?) fascinating so I appreciate the detour.
01:03:05 Sandra Muroy: I'm glad :)
01:10:01 Ryan Metcalf: I think I just had an epiphany!!! Is this were the “Big Endian” and “Little Endian” comes in? The leading bit representing positive and negative?
01:10:27 Jon Harmon (jonthegeek): > typeof(0L)
[1] "integer"
01:12:42 Jon Harmon (jonthegeek): > .Machine$double.xmax
[1] 1.797693e+308
01:15:53 Jon Harmon (jonthegeek): > 1:10 + 1
[1] 2 3 4 5 6 7 8 9 10 11
01:16:19 Jon Harmon (jonthegeek): > 1:10 + 2:11
[1] 3 5 7 9 11 13 15 17 19 21
```
</details>
`r knitr::include_url("https://www.youtube.com/embed/EfOPxmQ9R-c")`
<details>
<summary> Meeting chat log </summary>
```
00:03:09 Becki R. (she/her): I have a buzz in my audio so I'm staying muted.
00:30:48 Federica Gazzelloni: http://adv-r.had.co.nz/Subsetting.html
00:33:31 Jon Harmon (jonthegeek): mtcars["mpg"]
mtcars[["mpg"]]
00:35:19 Jon Harmon (jonthegeek): months <- purrr::set_names(month.name, month.abb)
00:35:40 Jon Harmon (jonthegeek): months["Jan"]
00:35:46 Jon Harmon (jonthegeek): Jan
"January"
00:36:10 Jon Harmon (jonthegeek): > months[["Jan"]]
[1] "January"
00:38:28 Federica Gazzelloni: it acts like unlist()
00:38:48 Jon Harmon (jonthegeek): > unlist(mtcars["mpg"])
mpg1 mpg2 mpg3 mpg4 mpg5 mpg6 mpg7 mpg8 mpg9 mpg10 mpg11 mpg12 mpg13 mpg14
21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
mpg15 mpg16 mpg17 mpg18 mpg19 mpg20 mpg21 mpg22 mpg23 mpg24 mpg25 mpg26 mpg27 mpg28
10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
mpg29 mpg30 mpg31 mpg32
15.8 19.7 15.0 21.4
00:39:13 Jon Harmon (jonthegeek): > unname(unlist(mtcars["mpg"]))
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4
[17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
00:39:29 Jon Harmon (jonthegeek): single <- mtcars["mpg"]
00:39:50 Jon Harmon (jonthegeek): > attributes(single) <- NULL
> single
[[1]]
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4
[17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
00:42:51 Jon Harmon (jonthegeek): > str(months[[1]])
chr "January"
> str(months[1])
Named chr "January"
- attr(*, "names")= chr "Jan"
00:43:41 Jon Harmon (jonthegeek): ?`[`
00:44:15 Jon Harmon (jonthegeek): The most important distinction between [, [[ and $ is that the [ can select more than one element whereas the other two select a single element.
00:47:28 Ryan Metcalf: BRB
00:56:31 Jon Harmon (jonthegeek): The tangent I obsessed on just now:
> pillar:::glimpse.default
function (x, width = NULL, max.level = 3, ...)
{
str(x, width = get_width_glimpse(width), max.level = max.level,
...)
invisible(x)
}
(huh, "glimpse" technically comes from the {pillar} package)
01:12:09 Jon Harmon (jonthegeek): > round(c(1.5, 2.5, 3.5, 4.5))
[1] 2 2 4 4
01:14:08 Jon Harmon (jonthegeek): Note that for rounding off a 5, the IEC 60559 standard (see also ‘IEEE 754’) is expected to be used, ‘go to the even digit’. Therefore round(0.5) is 0 and round(-1.5) is -2. However, this is dependent on OS services and on representation error (since e.g. 0.15 is not represented exactly, the rounding rule applies to the represented number and not to the printed number, and so round(0.15, 1) could be either 0.1 or 0.2).
```
</details>
### Cohort 6
`r knitr::include_url("https://www.youtube.com/embed/bRwmyUbario")`
<details>
<summary> Meeting chat log </summary>
```
00:36:56 Daniel Adereti: Lucky I am not a python user. lol
00:37:05 Marielena Soilemezidi: 😂
00:38:03 Marielena Soilemezidi: python will come and get you too, Daniel!
00:38:18 Daniel Adereti: lol! can't avoid it!
00:42:11 Daniel Adereti: Unfortunately, we have a strict 18 mins to end the lessons, let's see where we end up. Thanks
```
</details>
### Cohort 7
`r knitr::include_url("https://www.youtube.com/embed/crc1zcEKBWQ")`
### Cohort 8
`r knitr::include_url("https://www.youtube.com/embed/BNPvXGGcQMI")`