-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathshadow.py
executable file
·216 lines (164 loc) · 6.96 KB
/
shadow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python3
import argparse
import configparser
import json
import os
import time
from math import exp, sqrt
import numpy as np
from abc_shadow.abc_impl import (abc_shadow, binom_sampler, metropolis_sampler,
normal_sampler)
from abc_shadow.mh_impl import binom_ratio, mh_post_sampler, norm_ratio
from abc_shadow.model.binomial_edge_graph_model import BinomialEdgeGraphModel
from abc_shadow.model.binomial_graph_model import BinomialGraphModel
from abc_shadow.model.binomial_model import BinomialModel
from abc_shadow.model.norm_model import NormModel
from abc_shadow.model.potts_graph_model import PottsGraphModel
ALGOS = ['abc_shadow', 'metropolis_hasting']
MODELS = ['normal',
'binomial',
'binomial_edge_graph',
'binomial_graph',
'potts_graph']
def main():
parser = argparse.ArgumentParser(description="Shadow Launcher")
parser.add_argument("algo", choices=ALGOS)
parser.add_argument("model", choices=MODELS)
parser.add_argument("-c", "--configfile", required=True)
arguments = parser.parse_args()
if not os.path.isfile(arguments.configfile):
parser.error("The file {} does not exist!".format(
arguments.configfile))
config = configparser.ConfigParser()
config.read(arguments.configfile)
if arguments.model not in config.sections():
err = "Model is not described by the conf file"
raise ValueError(err)
config_model = config[arguments.model]
theta_0 = retrieve_vector(config_model.get('theta0'))
theta_perfect = retrieve_vector(config_model.get('thetaPerfect'))
delta = retrieve_vector(config_model.get('delta'))
n = config_model.getint('n')
iters = config_model.getint('iters')
size = config_model.getint('size')
print('============= SUMMARY =============')
print('theta_0: {}'.format(theta_0))
print('theta_perfect: {}'.format(theta_perfect))
print('delta: {}'.format(delta))
print('n: {}'.format(n))
print('iters: {}'.format(iters))
print('size: {}'.format(size))
if 'seed' in config_model:
print("🎲 Let's make this random world determinist")
seed = config_model.getint('seed')
np.random.seed(seed)
print('seed {} is enabled'.format(seed))
if arguments.algo == 'abc_shadow':
print("🚀 🚀 🚀 🚀 ABC SHADOW 🚀 🚀 🚀 🚀 ")
# Default sampler
sampler = metropolis_sampler
if arguments.model == 'normal':
model = NormModel(*theta_perfect)
sampler = normal_sampler
elif arguments.model == 'binomial':
model = BinomialModel(*theta_perfect)
sampler = binom_sampler
elif arguments.model == 'binomial_edge_graph':
model = BinomialEdgeGraphModel(*theta_perfect)
elif arguments.model == 'binomial_graph':
model = BinomialGraphModel(*theta_perfect)
elif arguments.model == 'potts_graph':
model = PottsGraphModel(*theta_perfect)
else:
err = "Unknown model: {}".format(arguments.model)
raise ValueError(err)
print("📊 Model {} has been instanciated".format(arguments.model))
sampler_it = config_model.getint('samplerIt')
print("Sampler iterations: {}".format(sampler_it))
sim_data = config_model.getboolean('simData')
if sim_data:
print("Observation is being generated ...")
y_obs = sampler(model, size, sampler_it)
else:
y_obs = retrieve_vector(config_model.get('obs'))
print("Data observed: {}".format(y_obs))
try:
mask = retrieve_vector(config_model.get('mask'))
print("🎭 Mask has been set: {}".format(mask))
except KeyError:
mask = None
model.set_params(*theta_0)
start_time = time.time()
posteriors = abc_shadow(model,
theta_0,
y_obs,
delta,
n,
size,
iters,
sampler=sampler,
sampler_it=sampler_it,
mask=mask)
end_time = time.time()
print("DURANTION : {}".format(end_time - start_time))
elif arguments.algo == 'metropolis_hasting':
print("🚂 🚂 🚂 Metropolis Hasting Sampling 🚂 🚂 🚂 ")
mask = config_model.get('mask')
if mask is not None:
print("Mask has been set: {}".format(mask))
if arguments.model == 'normal':
ratio = norm_ratio
y_obs = np.random.normal(
theta_perfect[0], sqrt(theta_perfect[1]), size)
elif arguments.model == 'binomial':
ratio = binom_ratio
n_p = theta_perfect[0]
p_perfect = exp(theta_perfect[-1]) / (1 + exp(theta_perfect[-1]))
p_0 = exp(theta_0[0]) / (1 + exp(theta_0[0]))
print(p_perfect)
theta_perfect = np.array([n_p, p_perfect])
theta_0 = np.array([n_p, p_0])
print("WARNING theta_perfect and theta_0 have been reassigned")
print('theta_0: {}'.format(theta_0))
print('theta_perfect: {}'.format(theta_perfect))
y_obs = y_obs = np.random.binomial(
theta_perfect[0], theta_perfect[1], size)
mask = [1, 0]
print("mask is forced to: {}".format(mask))
else:
err = "metropolis hasting cannot be used on a graph model"
raise ValueError(err)
print("📊 Model {} has been instanciated".format(arguments.model))
posteriors = mh_post_sampler(
theta_0, y_obs, delta, n, iters, ratio, mask=mask)
else:
err = 'Given estimation algorithm {} not known'.format(arguments.algo)
raise ValueError(err)
print("💾 Save Record ... ")
record = dict()
record['algo'] = arguments.algo
record['model'] = arguments.model
record['theta0'] = theta_0.tolist()
record['theta_perf'] = theta_perfect.tolist()
record['iters'] = iters
record['n'] = n
record['delta'] = delta.tolist() if isinstance(
delta, np.ndarray) else delta
record['y_obs'] = y_obs.tolist() if isinstance(
y_obs, np.ndarray) else y_obs
record['posteriors'] = [post.tolist() if isinstance(post, np.ndarray)
else post for post in posteriors]
timestamp = str(time.time())
filename = '-'.join([record['algo'], record['model'], timestamp])
filename += '.json'
with open(filename, 'w') as output_file:
json.dump(record, output_file)
print("📝 Record saved in {}".format(filename))
def retrieve_vector(entry):
if entry is None:
err = "This entry does not exist"
raise KeyError(err)
vec = list(map(np.float, entry.split(',')))
return np.array(vec)
if __name__ == "__main__":
main()