-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_3dmatch.py
142 lines (131 loc) · 7.15 KB
/
test_3dmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import sys
import numpy as np
import argparse
import open3d as o3d
import spconv.pytorch as spconv
from easydict import EasyDict as edict
from collections import defaultdict
from lib.timer import Timer, AverageMeter
from lib.benchmark_util import load_log, get_corr_from_dist_matrix, computeTransformationErr
from lib.utils import setup_seed, to_o3d_pcd, to_o3d_feats, to_array
from model.resunet_spconv import FCGF_spconv
from dataset.dataloader import get_dataloader
import torch
import torch.nn.functional as F
if __name__ == '__main__':
parser = argparse.ArgumentParser()
setup_seed(0)
parser.add_argument('--root', default=None, type=str, help='path to 3dmatch test set')
parser.add_argument('--checkpoint',default=None, type=str, help='path to latest checkpoint (default: None)')
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--do_rotated', default=False, action='store_true', help='whether evaluate 3DMatchRotated')
parser.add_argument('--voxel_size', default=0.025, type=float, help='voxel size to preprocess point cloud')
parser.add_argument('--num_points', type=int, default=5000, help='Number of random keypoints for each scene')
parser.add_argument('--mutual', default=False, action='store_true', help="whether to evaluation mutual inlier ratio")
parser.add_argument('--inlier_ratio_threshold', default=0.05, type=float)
parser.add_argument('--inlier_distance', default=0.10, type=float)
parser.add_argument('--distance_threshold', default=0.0375, type=float, help='ransac distance threshold')
parser.add_argument('--ransac_n', default=3, type=int, help='ransac distance threshold')
args = parser.parse_args()
dconfig = vars(args)
config = edict(dconfig)
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
### init model ###
model = FCGF_spconv()
checkpoint = torch.load(config.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
model = model.to(device)
print(f'successfully loading ckpt in {config.checkpoint}')
### init dataset ###
test_loader = get_dataloader(config, split='test')
ir = defaultdict(list)
fmr = defaultdict(list)
rr = defaultdict(list)
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
### evaluate
start.record()
with torch.no_grad():
data_iter = test_loader.__iter__()
num_pairs = test_loader.__len__()
for idx in range(num_pairs):
input_dict = data_iter.next()
scene, id1, id2 = input_dict['scene'].split('@')
is_consecutive = True if abs(int(id1) - int(id2)) <= 1 else False # exclude consecutive
for k, v in input_dict.items(): # load inputs to device.
if type(v) == list:
input_dict[k] = [item.to(device) for item in v]
elif type(v) == torch.Tensor:
input_dict[k] = v.to(device)
else:
pass
### construct sparse tensor ###
src_shape = input_dict['grid_size'][:3] # get sparse_shape
tgt_shape = input_dict['grid_size'][3:]
src_sp_tensor = spconv.SparseConvTensor(input_dict['src_F'],
input_dict['src_C'].int(),
src_shape, batch_size=1)
tgt_sp_tensor = spconv.SparseConvTensor(input_dict['tgt_F'],
input_dict['tgt_C'].int(),
tgt_shape, batch_size=1)
### get conv features ###
out_src = model(src_sp_tensor)
out_tgt = model(tgt_sp_tensor)
### evaluation ###
src_pcd = input_dict['pcd_src']
tgt_pcd = input_dict['pcd_tgt']
gt_trans = input_dict['tsfm']
src_feats = out_src.features
tgt_feats = out_tgt.features
src_sel = np.random.choice(len(src_pcd), min(len(src_pcd), config.num_points), replace=False)
tgt_sel = np.random.choice(len(tgt_pcd), min(len(tgt_pcd), config.num_points), replace=False)
src_pcd = src_pcd[src_sel]
tgt_pcd = tgt_pcd[tgt_sel]
src_feats = src_feats[src_sel]
tgt_feats = tgt_feats[tgt_sel]
feats_dist = torch.cdist(src_feats, tgt_feats, p=2)
corr = get_corr_from_dist_matrix(feats_dist, config.mutual)
# ### get inlier ratio ###
src_pcd_sel = src_pcd[corr[:, 0]]
tgt_pcd_sel = tgt_pcd[corr[:, 1]]
src_pcd_wrapped = (gt_trans[:3, :3] @ src_pcd_sel.transpose(1, 0) + gt_trans[:3, 3][:, None]).transpose(1, 0)
distance = torch.norm(src_pcd_wrapped - tgt_pcd_sel, p=2, dim=-1)
num_inliers = torch.sum(distance < config.inlier_distance)
inlier_ratio = num_inliers / len(distance)
feature_match_recall = inlier_ratio > config.inlier_ratio_threshold
ir[scene].append(inlier_ratio.cpu().item())
fmr[scene].append(feature_match_recall.cpu().item())
### ransac registration ###
if not is_consecutive: # only do ransac for those non-consecutive pairs
result_ransac = o3d.registration.registration_ransac_based_on_feature_matching(
to_o3d_pcd(src_pcd), to_o3d_pcd(tgt_pcd), to_o3d_feats(src_feats), to_o3d_feats(tgt_feats),
config.distance_threshold,
o3d.registration.TransformationEstimationPointToPoint(False), config.ransac_n,
[o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
o3d.registration.CorrespondenceCheckerBasedOnDistance(config.distance_threshold)],
o3d.registration.RANSACConvergenceCriteria(50000, 1000))
pred_trans = result_ransac.transformation
info = input_dict['info']
p = computeTransformationErr(np.linalg.inv(to_array(gt_trans)) @ pred_trans, to_array(info))
rr[scene].append(p <= 0.2 ** 2)
print(f'{scene}\t{id1}\t{id2}\t{idx + 1}/{num_pairs}\tir:{inlier_ratio:.4f}\tfmr:{feature_match_recall}\trr:{p <= 0.2 ** 2}')
else:
print(f'{scene}\t{id1}\t{id2}\t{idx + 1}/{num_pairs}\tir:{inlier_ratio:.4f}\tfmr:{feature_match_recall}')
end.record()
t = start.elapsed_time(end)
print('********evaluation results********')
print(f'Benchmark: 3DMatch\tSample: {config.num_points}\tMutual: {config.mutual}\t tot_time: {t/1000/60:.2f}m')
tot_ir, tot_fmr, tot_rr = [], [], []
for scene in test_loader.dataset.scene_list:
scene_ir = np.mean(ir[scene])
scene_fmr = np.mean(fmr[scene])
scene_rr = np.mean(rr[scene])
print(f'{scene:50}\tir: {scene_ir:5.4f}\tfmr: {scene_fmr:5.4f}\trr: {scene_rr:5.4f}')
tot_ir.append(scene_ir)
tot_fmr.append(scene_fmr)
tot_rr.append(scene_rr)
print(f'Average Inlier Ratio: {np.mean(tot_ir):.4f}\tFeature Match Recall: {np.mean(tot_fmr):.4f}'
f'\tRegistration Recall: {np.mean(tot_rr):.4f}')