-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_separate.py
299 lines (241 loc) · 13.1 KB
/
eval_separate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import numpy as np
from tqdm import tqdm
import torch
from utils.dataloader import ScanNetXYZProbMultiDataset, SceneNNDataset
from utils.minkunet import MinkUNet34C
from time import time
import hv_cuda
import logging
import os
logger = logging.getLogger(__name__)
import MinkowskiEngine as ME
from train_joint import collate_fn
from time import time
import hydra
from utils.calc_map import eval_det_multiprocessing, get_iou_obb
SCENENN = False
class HVFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, points, xyz, scale, obj, res, num_rots):
ctx.save_for_backward(points, xyz, scale, obj, res, num_rots)
outputs = hv_cuda.forward(points, xyz, scale, obj, res, num_rots)
grid_obj, grid_rot, grid_scale = outputs
return grid_obj, grid_rot, grid_scale
@staticmethod
def backward(ctx, grad_obj, grad_rot, grad_scale):
d_points = d_res = d_num_rots = None
points, xyz, scale, obj, res, num_rots = ctx.saved_tensors
outputs = hv_cuda.backward(grad_obj.contiguous(), points, xyz, scale, obj, res, num_rots)
d_xyz_labels, d_scale_labels, d_obj_labels = outputs
return d_points, d_xyz_labels, d_scale_labels, d_obj_labels, d_res, d_num_rots
class HoughVoting(torch.nn.Module):
def __init__(self, res=0.03, num_rots=120):
super().__init__()
# dtype?
self.res = torch.tensor(res, dtype=torch.float32).cuda()
self.num_rots = torch.tensor(num_rots, dtype=torch.int32).cuda()
def forward(self, points, xyz, scale, obj):
return HVFunction.apply(points, xyz, scale, obj, self.res, self.num_rots)
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
def compute_map(pred_map_cls, gt_map_cls, ovthresh=0.5):
rec, prec, ap = eval_det_multiprocessing(pred_map_cls, gt_map_cls, ovthresh=ovthresh, get_iou_func=get_iou_obb)
ret_dict = {}
for key in sorted(ap.keys()):
clsname = str(key)
ret_dict['%s Average Precision'%(clsname)] = ap[key]
ret_dict['mAP'] = np.mean(list(ap.values()))
rec_list = []
for key in sorted(ap.keys()):
clsname = str(key)
try:
ret_dict['%s Recall'%(clsname)] = rec[key][-1]
rec_list.append(rec[key][-1])
except:
ret_dict['%s Recall'%(clsname)] = 0
rec_list.append(0)
ret_dict['AR'] = np.mean(rec_list)
return ret_dict
def nms(boxes, scores, overlap_threshold):
I = np.argsort(scores)
pick = []
while (I.size!=0):
last = I.size
i = I[-1]
pick.append(i)
suppress = [last-1]
for pos in range(last-1):
j = I[pos]
o = get_iou_obb(boxes[i], boxes[j])
if (o>overlap_threshold):
suppress.append(pos)
I = np.delete(I,suppress)
return pick
all_categories = ['02747177', '02808440', '02871439', '02933112', '03001627', '03211117', '04256520', '04379243', 'others']
if SCENENN:
all_categories = ['cabinet', 'chair', 'table', 'sofa', 'display']
name2catname = {
'03211117': 'display',
'04379243': 'table',
'02808440': 'bathtub',
'02747177': 'trashbin',
'04256520': 'sofa',
'02933112': 'cabinet',
'02871439': 'bookshelf',
'others': 'others',
'03001627': 'chair',
}
catname2name = dict([(v, k) for k, v in name2catname.items()])
color_palette = [
(31, 119, 180), #
(255, 187, 120), #
(188, 189, 34), #
(140, 86, 75), #
(255, 152, 150), #
(214, 39, 40), #
(197, 176, 213), #
(148, 103, 189), #
(196, 156, 148), #
(23, 190, 207), #
(178, 76, 76),
(247, 182, 210),
]
@hydra.main(config_name='config', config_path='config')
def main(cfg):
cfg.category = 'all'
if SCENENN:
val_dataset = SceneNNDataset(cfg, training=False, augment=False)
else:
val_dataset = ScanNetXYZProbMultiDataset(cfg, training=False, augment=False)
print(len(val_dataset))
val_dataloader = torch.utils.data.DataLoader(val_dataset, collate_fn=collate_fn, shuffle=False, batch_size=1, num_workers=10)
logger.info('Start testing...')
all_models = {}
for category in all_categories:
model = MinkUNet34C(6 if cfg.use_xyz else 3, 8)
model.load_state_dict(torch.load(hydra.utils.to_absolute_path('pretrained/separate/{}.pth'.format('{}'.format(catname2name[category] if SCENENN else category)))))
model = model.cuda()
model.eval()
all_models[category] = model
hv = HoughVoting(cfg.scannet_res)
# validation
l, h, w = 2, 2, 2
bbox_raw = np.array([[l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2], [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2], [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]]).T
bbox_raw = torch.from_numpy(bbox_raw).float().cuda()
scannet_res = cfg.scannet_res
pred_map_cls = {}
gt_map_cls = {}
cnt = 0
with tqdm(val_dataloader) as t:
for scan_ids, scan_points, scan_feats, _, _, _ in t:
id_scan = scan_ids[0]
cnt += 1
feats = scan_feats.reshape(-1, 6 if cfg.use_xyz else 3) # recenter to [-1, 1] ?
feats[:, -3:] = feats[:, -3:] * 2. - 1.
scan_input = ME.SparseTensor(feats, scan_points, device='cuda')
bundle = {}
for category in all_categories:
model = all_models[category]
with torch.no_grad():
scan_output = model(scan_input)
scan_output_xyz = scan_output.F[:, :3]
scan_output_scale = scan_output.F[:, 3:6]
scan_output_obj = scan_output.F[:, 6:8]
xyz_pred = scan_output_xyz
prob_pred = torch.softmax(scan_output_obj, dim=-1)[:, 1]
if cfg.log_scale:
scale_pred = torch.exp(scan_output_scale)
else:
scale_pred = scan_output_scale
with torch.no_grad():
grid_obj, grid_rot, grid_scale = hv(scan_points[:, 1:].to('cuda') * cfg.scannet_res, xyz_pred.contiguous(), scale_pred.contiguous(), prob_pred.contiguous())
bundle[category] = (grid_obj, grid_rot, grid_scale, xyz_pred, prob_pred, scale_pred)
scan_points = scan_points[:, 1:] * cfg.scannet_res
scan_rgb = scan_feats[:, -3:]
corners = torch.stack([torch.min(scan_points, 0)[0], torch.max(scan_points, 0)[0]])
t.set_postfix(id_scan=str(scan_ids[0]))
elimination = 2
map_scene = []
for idx, category in enumerate(all_categories):
boxes = []
scores = []
probs = []
grid_obj, grid_rot, grid_scale, xyz_pred, prob_pred, scale_pred = bundle[category]
while True:
cand = torch.stack(unravel_index(torch.argmax(grid_obj), grid_obj.shape))
if grid_obj.cpu().numpy()[cand[0], cand[1], cand[2]] < 60:
break
grid_obj[max(cand[0]-elimination,0):cand[0]+elimination, max(cand[1]-elimination,0):cand[1]+elimination, max(cand[2]-elimination,0):cand[2]+elimination] = 0
rot_vec = grid_rot[cand[0], cand[1], cand[2]]
rot = torch.atan2(rot_vec[1], rot_vec[0])
rot_mat_full = torch.tensor([[torch.cos(rot), 0, -torch.sin(rot)], [0, 1, 0], [torch.sin(rot), 0, torch.cos(rot)]]).cuda()
scale_full = grid_scale[cand[0], cand[1], cand[2]]
cand_world = torch.tensor([corners[0, 0] + cfg.scannet_res * cand[0], corners[0, 1] + cfg.scannet_res * cand[1], corners[0, 2] + cfg.scannet_res * cand[2]]).cuda()
# fast filtering
bbox = (rot_mat_full @ torch.diag(scale_full) @ bbox_raw.T).T
bounding_vol = (torch.stack([torch.min(bbox, dim=0)[0], torch.max(bbox, dim=0)[0]]) / scannet_res).int()
cand_coords = torch.stack(torch.meshgrid(torch.arange(bounding_vol[0, 0], bounding_vol[1, 0] + 1), torch.arange(bounding_vol[0, 1], bounding_vol[1, 1] + 1), torch.arange(bounding_vol[0, 2], bounding_vol[1, 2] + 1)), -1).reshape(-1, 3)
cand_coords = cand_coords.cuda() + cand
cand_coords = torch.max(torch.min(cand_coords, torch.tensor(grid_obj.shape).cuda() - 1), torch.tensor([0, 0, 0]).long().cuda())
coords_inv = (((cand_coords - cand) * scannet_res) @ rot_mat_full) / scale_full
bbox_mask = (-1 < coords_inv[:, 0]) & (coords_inv[:, 0] < 1) \
& (-1 < coords_inv[:, 1]) & (coords_inv[:, 1] < 1) \
& (-1 < coords_inv[:, 2]) & (coords_inv[:, 2] < 1)
bbox_coords = cand_coords[bbox_mask]
coords_inv_world = ((scan_points.cuda() - cand_world) @ rot_mat_full) / scale_full
bbox_mask_world = (-1 < coords_inv_world[:, 0]) & (coords_inv_world[:, 0] < 1) \
& (-1 < coords_inv_world[:, 1]) & (coords_inv_world[:, 1] < 1) \
& (-1 < coords_inv_world[:, 2]) & (coords_inv_world[:, 2] < 1)
# vote elimination: current off
# prob_delta = torch.zeros_like(prob_pred)
# prob_delta[bbox_mask_world] = prob_pred[bbox_mask_world]
# if not torch.all(prob_delta == 0):
# grid_obj_delta, _, _ = hv(scan_points.cuda(), xyz_pred.contiguous(), scale_pred.contiguous(), prob_delta.contiguous())
# grid_obj -= grid_obj_delta
grid_obj[bbox_coords[:, 0], bbox_coords[:, 1], bbox_coords[:, 2]] = 0
mask = prob_pred[bbox_mask_world] > 0.3
if torch.sum(mask) < 0.2 * torch.sum(bbox_mask_world) or torch.sum(bbox_mask_world) < 10:
continue
gt_coords = coords_inv_world[bbox_mask_world][mask]
error = torch.mean(torch.norm(xyz_pred[bbox_mask_world][mask] - gt_coords, dim=-1) * prob_pred[bbox_mask_world][mask])
if error > 0.3:
continue
probmax = torch.max(prob_pred[bbox_mask_world])
bbox = (rot_mat_full @ torch.diag(scale_full) @ bbox_raw.cuda().T).T + cand_world
boxes.append(bbox.cpu().numpy())
scores.append(probmax.item())
probs.append(probmax.item())
pick = nms(np.array(boxes), np.array(scores), 0.3)
for i in pick:
map_scene.append((category, boxes[i], probs[i]))
pred_map_cls[id_scan] = map_scene
# read ground truth
lines = open(os.path.join(os.path.join(cfg.data.scene_nn_root, 'results_gt') if SCENENN else cfg.data.gt_path, '{}.txt'.format(id_scan))).read().splitlines()
map_scene = []
for line in lines:
tx, ty, tz, ry, sx, sy, sz = [float(v) for v in line.split(' ')[:7]]
category = line.split(' ')[-1]
if SCENENN and category == 'desk':
category = 'table'
if SCENENN and category == 'television':
category = 'display'
if cfg.category != 'all' and category != cfg.category:
continue
bbox = (np.array([[np.cos(ry), 0, -np.sin(ry)], [0, 1, 0], [np.sin(ry), 0, np.cos(ry)]]) @ np.diag([sx, sy, sz]) @ bbox_raw.cpu().numpy().T).T + np.array([tx, ty, tz])
bbox_mat = np.eye(4)
bbox_mat[:3, :3] = np.array([[np.cos(ry), 0, -np.sin(ry)], [0, 1, 0], [np.sin(ry), 0, np.cos(ry)]]) @ np.diag([sx, sy, sz])
bbox_mat[:3, 3] = np.array([tx, ty, tz])
map_scene.append((category, bbox))
gt_map_cls[id_scan] = map_scene
for thresh in [0.25, 0.5]:
logger.info('thresh: {}'.format(thresh))
ret_dict = compute_map(pred_map_cls, gt_map_cls, ovthresh=thresh)
for category in all_categories:
logger.info('{} Recall: {}'.format(category, ret_dict['{} Recall'.format(category)]))
logger.info('{} Average Precision: {}'.format(category, ret_dict['{} Average Precision'.format(category)]))
if __name__ == "__main__":
main()