forked from lichunshang/deep_ekf_vio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_se3.py
190 lines (143 loc) · 6.22 KB
/
torch_se3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from log import logger
import sys
import traceback
def exp_SO3(phi):
phi_norm = torch.norm(phi)
if phi_norm > 1e-8:
unit_phi = phi / phi_norm
unit_phi_skewed = skew3(unit_phi)
C = torch.eye(3, 3, device=phi.device) + torch.sin(phi_norm) * unit_phi_skewed + \
(1 - torch.cos(phi_norm)) * torch.mm(unit_phi_skewed, unit_phi_skewed)
else:
phi_skewed = skew3(phi)
C = torch.eye(3, 3, device=phi.device) + phi_skewed + 0.5 * torch.mm(phi_skewed, phi_skewed)
return C
# assumes small rotations
def log_SO3(C):
phi_norm = torch.acos(torch.clamp((torch.trace(C) - 1) / 2, -1.0, 1.0))
if torch.sin(phi_norm) > 1e-6:
phi = phi_norm * unskew3(C - C.transpose(0, 1)) / (2 * torch.sin(phi_norm))
else:
phi = 0.5 * unskew3(C - C.transpose(0, 1))
return phi
def log_SO3_eigen(C): # no autodiff
phi_norm = torch.acos(torch.clamp((torch.trace(C) - 1) / 2, -1.0, 1.0))
# eig is not very food for C close to identity, will only keep around 3 decimals places
w, v = torch.eig(C, eigenvectors=True)
a = torch.tensor([0., 0., 0.], device=C.device)
for i in range(0, w.size(0)):
if torch.abs(w[i, 0] - 1.0) < 1e-6 and torch.abs(w[i, 1] - 0.0) < 1e-6:
a = v[:, i]
assert (torch.abs(torch.norm(a) - 1.0) < 1e-6)
if torch.allclose(exp_SO3(phi_norm * a), C, atol=1e-3):
return phi_norm * a
elif torch.allclose(exp_SO3(-phi_norm * a), C, atol=1e-3):
return -phi_norm * a
else:
raise ValueError("Invalid logarithmic mapping")
def skew3(v):
m = torch.zeros(3, 3, device=v.device)
m[0, 1] = -v[2]
m[0, 2] = v[1]
m[1, 0] = v[2]
m[1, 2] = -v[0]
m[2, 0] = -v[1]
m[2, 1] = v[0]
return m
def unskew3(m):
return torch.stack([m[2, 1], m[0, 2], m[1, 0]])
def J_left_SO3_inv(phi):
phi = phi.view(3, 1)
phi_norm = torch.norm(phi)
if torch.abs(phi_norm) > 1e-6:
a = phi / phi_norm
cot_half_phi_norm = 1.0 / torch.tan(phi_norm / 2)
J_inv = (phi_norm / 2) * cot_half_phi_norm * torch.eye(3, 3, device=phi.device) + \
(1 - (phi_norm / 2) * cot_half_phi_norm) * \
torch.mm(a, a.transpose(0, 1)) - (phi_norm / 2) * skew3(a)
else:
J_inv = torch.eye(3, 3, device=phi.device) - 0.5 * skew3(phi)
return J_inv
def J_left_SO3(phi):
phi = phi.view(3, 1)
phi_norm = torch.norm(phi)
if torch.abs(phi_norm) > 1e-6:
a = phi / phi_norm
J = (torch.sin(phi_norm) / phi_norm) * torch.eye(3, 3, device=phi.device) + \
(1 - (torch.sin(phi_norm) / phi_norm)) * torch.mm(a, a.transpose(0, 1)) + \
((1 - torch.cos(phi_norm)) / phi_norm) * skew3(a)
else:
J = torch.eye(3, 3, device=phi.device) + 0.5 * skew3(phi)
return J
# ============================= Batched Methods =============================
def skew3_b(v):
m = torch.zeros([v.size(0), 3, 3], device=v.device)
m[..., 0, 1] = -v[..., 2, 0]
m[..., 0, 2] = v[..., 1, 0]
m[..., 1, 0] = v[..., 2, 0]
m[..., 1, 2] = -v[..., 0, 0]
m[..., 2, 0] = -v[..., 1, 0]
m[..., 2, 1] = v[..., 0, 0]
return m
def unskew3_b(m):
return torch.unsqueeze(torch.stack([m[..., 2, 1], m[..., 0, 2], m[..., 1, 0]], -1), -1)
def exp_SO3_b(phi):
eps = 1e-8
C = torch.zeros(phi.size(0), 3, 3, device=phi.device)
phi_norm = torch.norm(phi, dim=1, keepdim=True)
sel = torch.squeeze(phi_norm > eps)
phi_norm_sel = phi_norm[sel]
phi_no_sel = phi[~sel]
if phi_norm_sel.size(0):
unit_phi_sel = phi[sel] / phi_norm_sel
unit_phi_skewed_sel = skew3_b(unit_phi_sel)
C[sel] = torch.eye(3, 3, device=phi.device).repeat([phi_norm_sel.size(0), 1, 1]) + \
torch.sin(phi_norm_sel) * unit_phi_skewed_sel + \
(1 - torch.cos(phi_norm_sel)) * torch.matmul(unit_phi_skewed_sel, unit_phi_skewed_sel)
if phi_no_sel.size(0):
phi_skewed_no_sel = skew3_b(phi_no_sel)
C[~sel] = torch.eye(3, 3, device=phi.device).repeat([phi_no_sel.size(0), 1, 1]) + phi_skewed_no_sel
return C
# assumes small rotations, does not handle case when phi is close to pi
# supports more than one batch dimensions
def log_SO3_b(C, raise_exeption=True):
eps = 1e-6
eps_pi = 1e-4 # strict eps_pi
ret_sz = list(C.shape[:-2]) + [3, 1]
phi = torch.zeros(*ret_sz, device=C.device)
trace = torch.sum(torch.diagonal(C, dim1=-2, dim2=-1), dim=-1, keepdim=True)
acos_ratio = torch.unsqueeze((trace - 1) / 2, -1)
if torch.any(acos_ratio + 1.0 < eps_pi):
sel_invalid = torch.sum(acos_ratio + 1.0 < eps_pi, (-2, -1)) > 0
logger.print(sel_invalid)
logger.print(C[sel_invalid])
logger.print("Warn: log_SO3_b acos_ratio close to -1")
if raise_exeption:
raise ValueError("Warn: log_SO3_b acos_ratio close to -1")
sel = ((acos_ratio - 1.0 < -eps) & ~(acos_ratio + 1.0 < eps_pi)).view(ret_sz[:-2])
not_sel = (~(acos_ratio - 1.0 < -eps) & ~(acos_ratio + 1.0 < eps_pi)).view(ret_sz[:-2])
phi_norm_sel = torch.acos(acos_ratio[sel])
C_sel = C[sel]
C_not_sel = C[not_sel]
phi[sel] = phi_norm_sel * unskew3_b(C_sel - C_sel.transpose(-2, -1)) / (2 * torch.sin(phi_norm_sel))
phi[not_sel] = 0.5 * unskew3_b(C_not_sel - C_not_sel.transpose(-2, -1))
return phi
def J_left_SO3_inv_b(phi):
eps = 1e-6
J_inv = torch.zeros(phi.size(0), 3, 3, device=phi.device)
phi_norm = torch.norm(phi, dim=1, keepdim=True)
sel = torch.squeeze(phi_norm > eps)
phi_norm_sel = phi_norm[sel]
if phi_norm_sel.size(0):
unit_phi_sel = phi[sel] / phi_norm_sel
cot_half_phi_norm_sel = 1.0 / torch.tan(phi_norm_sel / 2)
J_inv[sel] = (phi_norm_sel / 2) * cot_half_phi_norm_sel * \
torch.eye(3, 3, device=phi.device).repeat(phi_norm_sel.size(0), 1, 1) + \
(1 - (phi_norm_sel / 2) * cot_half_phi_norm_sel) * \
torch.matmul(unit_phi_sel, unit_phi_sel.transpose(-2, -1)) - \
(phi_norm_sel / 2) * skew3_b(unit_phi_sel)
phi_no_sel = phi[~sel]
if phi_no_sel.size(0):
J_inv[~sel] = torch.eye(3, 3, device=phi.device).repeat(phi_no_sel.size(0), 1, 1) - 0.5 * skew3_b(phi_no_sel)
return J_inv