forked from lichunshang/deep_ekf_vio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
499 lines (413 loc) · 23.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import torch
import torch.nn as nn
import numpy as np
import data_loader
import torch_se3
import time
from params import par
from torch.autograd import Variable
from torch.nn.init import kaiming_normal_, orthogonal_
def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1, dropout=0):
if batchNorm:
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2,
bias=False),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(0.1, inplace=True),
nn.Dropout(dropout) # , inplace=True)
)
else:
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2,
bias=True),
nn.LeakyReLU(0.1, inplace=True),
nn.Dropout(dropout) # , inplace=True)
)
class IMUKalmanFilter(nn.Module):
STATE_VECTOR_DIM = 18
def __init__(self):
super(IMUKalmanFilter, self).__init__()
def force_symmetrical(self, M):
M_upper = torch.triu(M)
return M_upper + M_upper.transpose(-2, -1) * \
(1 - torch.eye(M_upper.size(-2), M_upper.size(-1), device=M.device).repeat(M_upper.size(0), 1, 1))
def predict_one_step(self, t_accum, C_accum, r_accum, v_accum, dt, g_k, v_k, bw_k, ba_k, covar,
gyro_meas, accel_meas, imu_noise_covar):
mm = torch.matmul
batch_size = dt.size(0)
dt2 = dt * dt
w = gyro_meas - bw_k
w_skewed = torch_se3.skew3_b(w)
C_accum_transpose = C_accum.transpose(-2, -1)
a = accel_meas - ba_k
v = mm(C_accum_transpose, v_k - g_k * t_accum + v_accum)
v_skewed = torch_se3.skew3_b(v)
I3 = torch.eye(3, 3, device=covar.device).repeat(batch_size, 1, 1)
exp_int_w = torch_se3.exp_SO3_b(dt * w)
exp_int_w_transpose = exp_int_w.transpose(-2, -1)
# propagate uncertainty, 2nd order
F = torch.zeros(batch_size, 18, 18, device=covar.device)
F[:, 3:6, 3:6] = -w_skewed
F[:, 3:6, 12:15] = -I3
F[:, 6:9, 3:6] = -mm(C_accum, v_skewed)
F[:, 6:9, 9:12] = C_accum
F[:, 9:12, 0:3] = -C_accum_transpose
F[:, 9:12, 3:6] = -torch_se3.skew3_b(mm(C_accum_transpose, g_k))
F[:, 9:12, 9:12] = -w_skewed
F[:, 9:12, 12:15] = -v_skewed
F[:, 9:12, 15:18] = -I3
G = torch.zeros(batch_size, 18, 12, device=covar.device)
G[:, 3:6, 0:3] = -I3
G[:, 9:12, 0:3] = -v_skewed
G[:, 9:12, 6:9] = -I3
G[:, 12:15, 3:6] = I3
G[:, 15:18, 9:12] = I3
Phi = torch.eye(18, 18, device=covar.device).repeat(batch_size, 1, 1) + \
F * dt + 0.5 * mm(F, F) * dt2
Phi[:, 6:9, 12:15] = torch.zeros(3, 3, device=covar.device) # this blocks is exactly zero in 2nd order approx
Phi[:, 3:6, 3:6] = exp_int_w_transpose
Phi[:, 9:12, 9:12] = exp_int_w_transpose
Q = mm(mm(mm(mm(Phi, G), imu_noise_covar.repeat(batch_size, 1, 1)),
G.transpose(-2, -1)), Phi.transpose(-2, -1)) * dt
covar = mm(mm(Phi, covar), Phi.transpose(-2, -1)) + Q
covar = self.force_symmetrical(covar)
# propagate nominal states
r_accum = r_accum + v_accum * dt + 0.5 * mm(C_accum, (dt2 * a))
v_accum = v_accum + mm(C_accum, (dt * a))
C_accum = mm(C_accum, exp_int_w)
t_accum = t_accum + dt
return t_accum, C_accum, r_accum, v_accum, covar, F, G, Phi, Q
def predict(self, imu_meas, imu_noise_covar, prev_state, prev_covar):
num_batches = imu_meas.size(0)
C_accum = torch.eye(3, 3, device=imu_meas.device).repeat(num_batches, 1, 1)
r_accum = torch.zeros(num_batches, 3, 1, device=imu_meas.device)
v_accum = torch.zeros(num_batches, 3, 1, device=imu_meas.device)
t_accum = torch.zeros(num_batches, 1, 1, device=imu_meas.device)
# set C, r covariances to zero
U = torch.diag(torch.tensor([1.] * 3 + [0.] * 6 + [1.] * 9, device=imu_meas.device)).repeat(num_batches, 1, 1)
pred_covar = torch.matmul(torch.matmul(U, prev_covar), U.transpose(-2, -1))
pred_states = []
pred_covars = []
# Note C and r always gonna be identity and at each time k
g_k, _, _, v_k, bw_k, ba_k = IMUKalmanFilter.decode_state_b(prev_state)
for tau in range(0, imu_meas.size(1) - 1):
t, gyro_meas, accel_meas = data_loader.SubseqDataset.decode_imu_data_b(imu_meas[:, tau, :])
tp1, _, _ = data_loader.SubseqDataset.decode_imu_data_b(imu_meas[:, tau + 1, :])
dt = tp1 - t
# sel = ~torch.isnan(dt).view(num_batches)
# only update the selected batches
# if torch.sum(sel) > 0:
# t_accum[sel], C_accum[sel], r_accum[sel], v_accum[sel], pred_covar[sel], _, _, _, _ = \
# self.predict_one_step(t_accum[sel], C_accum[sel], r_accum[sel], v_accum[sel], dt[sel], g_k[sel],
# v_k[sel], bw_k[sel], ba_k[sel], pred_covar[sel],
# gyro_meas[sel], accel_meas[sel], imu_noise_covar)
t_accum, C_accum, r_accum, v_accum, pred_covar, _, _, _, _ = \
self.predict_one_step(t_accum, C_accum, r_accum, v_accum, dt, g_k,
v_k, bw_k, ba_k, pred_covar,
gyro_meas, accel_meas, imu_noise_covar)
pred_covars.append(pred_covar)
pred_states.append(IMUKalmanFilter.encode_state_b(g_k,
C_accum,
v_k * t_accum - 0.5 * g_k * t_accum * t_accum + r_accum,
torch.matmul(C_accum.transpose(-2, -1),
v_k - g_k * t_accum + v_accum),
bw_k, ba_k))
# pred_state = IMUKalmanFilter.encode_state_b(g_k,
# C_accum,
# v_k * t_accum - 0.5 * g_k * t_accum * t_accum + r_accum,
# torch.matmul(C_accum.transpose(-2, -1),
# v_k - g_k * t_accum + v_accum),
# bw_k, ba_k)
return pred_states, pred_covars
def meas_residual_and_jacobi(self, C_pred, r_pred, vis_meas, T_imu_cam):
C_cal = T_imu_cam[:, 0:3, 0:3]
C_cal_transpose = C_cal.transpose(-2, -1)
r_cal = T_imu_cam[:, 0:3, 3:4]
mm = torch.matmul
vis_meas_rot = vis_meas[:, 0:3, :]
vis_meas_trans = vis_meas[:, 3:6, :]
# residual_rot = torch_se3.log_SO3_b(mm(mm(mm(torch_se3.exp_SO3_b(vis_meas_rot), C_cal_transpose),
# C_pred.transpose(-2, -1)), C_cal))
phi_pred = torch_se3.log_SO3_b(mm(mm(C_cal_transpose, C_pred), C_cal))
residual_rot = vis_meas_rot - phi_pred
residual_trans = vis_meas_trans - mm(mm(C_cal_transpose, C_pred), r_cal) - \
mm(C_cal_transpose, r_pred - r_cal)
residual = torch.cat([residual_rot, residual_trans], dim=1)
H = torch.zeros(vis_meas.shape[0], 6, 18, device=vis_meas.device)
# H[:, 0:3, 3:6] = -mm(mm(torch_se3.J_left_SO3_inv_b(-residual_rot), C_cal_transpose), C_pred)
H[:, 0:3, 3:6] = -mm(torch_se3.J_left_SO3_inv_b(-phi_pred), C_cal_transpose)
H[:, 3:6, 3:6] = mm(mm(C_cal_transpose, C_pred), torch_se3.skew3_b(r_cal))
H[:, 3:6, 6:9] = -C_cal_transpose
return residual, H
def update(self, pred_state, pred_covar, vis_meas, vis_meas_covar, T_imu_cam):
mm = torch.matmul
g_pred, C_pred, r_pred, v_pred, bw_pred, ba_pred = IMUKalmanFilter.decode_state_b(pred_state)
residual, H = self.meas_residual_and_jacobi(C_pred, r_pred, vis_meas, T_imu_cam)
H = -H # this is required for EKF, since the way we derived the Jacobian are for batch methods
H_transpose = H.transpose(-2, -1)
S = mm(mm(H, pred_covar), H_transpose) + vis_meas_covar
K = mm(mm(pred_covar, H_transpose), S.inverse())
est_error = mm(K, residual)
I18 = torch.eye(18, 18, device=pred_state.device).repeat(vis_meas.size(0), 1, 1)
est_covar = mm(I18 - mm(K, H), pred_covar)
g_err = est_error[:, 0:3]
C_err = est_error[:, 3:6]
r_err = est_error[:, 6:9]
v_err = est_error[:, 9:12]
bw_err = est_error[:, 12:15]
ba_err = est_error[:, 15:18]
est_state = IMUKalmanFilter.encode_state_b(g_pred + g_err,
mm(C_pred, torch_se3.exp_SO3_b(C_err)),
r_pred + r_err,
v_pred + v_err,
bw_pred + bw_err,
ba_pred + ba_err)
return est_state, est_covar
def composition(self, prev_pose, est_state, est_covar):
batch_size = est_state.size(0)
g, C, r, v, bw, ba = IMUKalmanFilter.decode_state_b(est_state)
C_transpose = C.transpose(-2, -1)
new_pose = torch.eye(4, 4, device=prev_pose.device).repeat(batch_size, 1, 1)
new_pose[:, 0:3, 0:3] = torch.matmul(C_transpose, prev_pose[:, 0:3, 0:3])
new_pose[:, 0:3, 3:4] = torch.matmul(C_transpose, prev_pose[:, 0:3, 3:4] - r)
new_g = torch.matmul(C_transpose, g)
new_state = IMUKalmanFilter.encode_state_b(new_g, C, r, v, bw, ba)
U = torch.eye(18, 18, device=prev_pose.device).repeat(batch_size, 1, 1)
U[:, 0:3, 0:3] = C_transpose
U[:, 0:3, 3:6] = torch_se3.skew3_b(new_g)
new_covar = torch.matmul(torch.matmul(U, est_covar), U.transpose(-2, -1))
new_covar = self.force_symmetrical(new_covar)
return new_pose, new_state, new_covar
def forward(self, imu_data, imu_noise_covar,
prev_pose, prev_state, prev_covar,
vis_meas, vis_meas_covar, T_imu_cam):
num_timesteps = vis_meas.size(1) # equals to imu_data.size(1) - 1
poses_over_timesteps = [prev_pose]
states_over_timesteps = [prev_state]
covars_over_timesteps = [prev_covar]
for k in range(0, num_timesteps):
pred_states, pred_covars = self.predict(imu_data[:, k], imu_noise_covar,
states_over_timesteps[-1], covars_over_timesteps[-1])
est_state, est_covar = self.update(pred_states[-1], pred_covars[-1],
vis_meas[:, k], vis_meas_covar[:, k], T_imu_cam)
new_pose, new_state, new_covar = self.composition(poses_over_timesteps[-1], est_state, est_covar)
poses_over_timesteps.append(new_pose)
states_over_timesteps.append(new_state)
covars_over_timesteps.append(new_covar)
return torch.stack(poses_over_timesteps, 1), \
torch.stack(states_over_timesteps, 1), \
torch.stack(covars_over_timesteps, 1)
@staticmethod
def decode_state_b(state_vector):
sz = list(state_vector.shape[:-1])
g = state_vector[..., 0:3].view(sz + [3, 1])
C = state_vector[..., 3:12].view(sz + [3, 3])
r = state_vector[..., 12:15].view(sz + [3, 1])
v = state_vector[..., 15:18].view(sz + [3, 1])
bw = state_vector[..., 18:21].view(sz + [3, 1])
ba = state_vector[..., 21:24].view(sz + [3, 1])
return g, C, r, v, bw, ba
@staticmethod
def encode_state_b(g, C, r, v, bw, ba):
return torch.cat((g.view(-1, 3),
C.view(-1, 9), r.view(-1, 3),
v.view(-1, 3),
bw.view(-1, 3), ba.view(-1, 3),), -1)
@staticmethod
def encode_state(g, C, r, v, bw, ba):
return torch.squeeze(IMUKalmanFilter.encode_state_b(g, C, r, v, bw, ba))
@staticmethod
def decode_state(state_vector):
g, C, r, v, bw, ba = IMUKalmanFilter.decode_state_b(state_vector)
return g.view(3, 1), C.view(3, 3), r.view(3, 1), v.view(3, 1), bw.view(3, 1), ba.view(3, 1)
@staticmethod
def state_to_so3(state_vector):
g, C, r, v, bw, ba = IMUKalmanFilter.decode_state_b(state_vector)
phi = torch_se3.log_SO3_b(C)
return torch.cat((g.view(-1, 3),
phi.view(-1, 3), r.view(-1, 3),
v.view(-1, 3),
bw.view(-1, 3), ba.view(-1, 3),), -1)
class DeepVO(nn.Module):
def __init__(self, imsize1, imsize2, batchNorm):
super(DeepVO, self).__init__()
# CNN
self.batchNorm = batchNorm
self.conv1 = conv(self.batchNorm, 6, 64, kernel_size=7, stride=2, dropout=par.conv_dropout[0])
self.conv2 = conv(self.batchNorm, 64, 128, kernel_size=5, stride=2, dropout=par.conv_dropout[1])
self.conv3 = conv(self.batchNorm, 128, 256, kernel_size=5, stride=2, dropout=par.conv_dropout[2])
self.conv3_1 = conv(self.batchNorm, 256, 256, kernel_size=3, stride=1, dropout=par.conv_dropout[3])
self.conv4 = conv(self.batchNorm, 256, 512, kernel_size=3, stride=2, dropout=par.conv_dropout[4])
self.conv4_1 = conv(self.batchNorm, 512, 512, kernel_size=3, stride=1, dropout=par.conv_dropout[5])
self.conv5 = conv(self.batchNorm, 512, 512, kernel_size=3, stride=2, dropout=par.conv_dropout[6])
self.conv5_1 = conv(self.batchNorm, 512, 512, kernel_size=3, stride=1, dropout=par.conv_dropout[7])
self.conv6 = conv(self.batchNorm, 512, 1024, kernel_size=3, stride=2, dropout=par.conv_dropout[8])
# Compute the shape based on diff image size
tmp = Variable(torch.zeros(1, 6, imsize1, imsize2))
tmp = self.cnn(tmp)
# RNN
if par.hybrid_recurrency and par.enable_ekf:
lstm_input_size = IMUKalmanFilter.STATE_VECTOR_DIM ** 2 + IMUKalmanFilter.STATE_VECTOR_DIM
else:
lstm_input_size = 0
self.rnn = nn.LSTM(
input_size=int(np.prod(tmp.size())) + lstm_input_size,
hidden_size=par.rnn_hidden_size,
num_layers=par.rnn_num_layers,
dropout=par.rnn_dropout_between,
batch_first=True)
self.rnn_drop_out = nn.Dropout(par.rnn_dropout_out)
self.linear = nn.Linear(in_features=par.rnn_hidden_size, out_features=12)
# Initilization
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear):
kaiming_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.LSTM):
# layer 1
kaiming_normal_(m.weight_ih_l0) # orthogonal_(m.weight_ih_l0)
kaiming_normal_(m.weight_hh_l0)
m.bias_ih_l0.data.zero_()
m.bias_hh_l0.data.zero_()
# Set forget gate bias to 1 (remember)
n = m.bias_hh_l0.size(0)
start, end = n // 4, n // 2
m.bias_hh_l0.data[start:end].fill_(1.)
# layer 2
kaiming_normal_(m.weight_ih_l1) # orthogonal_(m.weight_ih_l1)
kaiming_normal_(m.weight_hh_l1)
m.bias_ih_l1.data.zero_()
m.bias_hh_l1.data.zero_()
n = m.bias_hh_l1.size(0)
start, end = n // 4, n // 2
m.bias_hh_l1.data[start:end].fill_(1.)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward_one_ts(self, feature_vector, lstm_init_state=None):
# lstm_init_state has the dimension of (# batch, 2 (hidden/cell), lstm layers, lstm hidden size)
if lstm_init_state is not None:
hidden_state = lstm_init_state[:, 0, :, :].permute(1, 0, 2).contiguous()
cell_state = lstm_init_state[:, 1, :, :].permute(1, 0, 2).contiguous()
lstm_init_state = (hidden_state, cell_state,)
# RNN
# lstm_state is (hidden state, cell state,)
# each hidden/cell state has the shape (lstm layers, batch size, lstm hidden size)
out, lstm_state = self.rnn(feature_vector.unsqueeze(1), lstm_init_state)
out = self.rnn_drop_out(out)
out = self.linear(out)
# rearrange the shape back to (# batch, 2 (hidden/cell), lstm layers, lstm hidden size)
lstm_state = torch.stack(lstm_state, dim=0)
lstm_state = lstm_state.permute(2, 0, 1, 3)
return out.squeeze(1), lstm_state
def encode_image(self, images):
# images: (batch, seq_len, channel, width, height)
x = images
# stack_image
x = torch.cat((x[:, :-1], x[:, 1:]), dim=2)
batch_size = x.size(0)
seq_len = x.size(1)
# CNN
x = x.view(batch_size * seq_len, x.size(2), x.size(3), x.size(4))
x = self.cnn(x)
x = x.view(batch_size, seq_len, -1)
return x
def cnn(self, x):
out_conv2 = self.conv2(self.conv1(x))
out_conv3 = self.conv3_1(self.conv3(out_conv2))
out_conv4 = self.conv4_1(self.conv4(out_conv3))
out_conv5 = self.conv5_1(self.conv5(out_conv4))
out_conv6 = self.conv6(out_conv5)
return out_conv6
def weight_parameters(self):
return [param for name, param in self.named_parameters() if 'weight' in name]
def bias_parameters(self):
return [param for name, param in self.named_parameters() if 'bias' in name]
class E2EVIO(nn.Module):
def __init__(self):
super(E2EVIO, self).__init__()
self.vo_module = DeepVO(par.img_h, par.img_w, par.batch_norm)
self.imu_noise_covar_weights = torch.nn.Linear(1, 4, bias=False)
if not par.train_imu_noise_covar:
for p in self.imu_noise_covar_weights.parameters():
p.requires_grad = False
self.imu_noise_covar_weights.weight.data.zero_()
else:
self.imu_noise_covar_weights.weight.data /= 10
self.init_covar_diag_sqrt = nn.Parameter(torch.tensor(par.init_covar_diag_sqrt, dtype=torch.float32))
if not par.train_init_covar:
self.init_covar_diag_sqrt.requires_grad = False
if par.fix_vo_weights:
for param in self.vo_module.parameters():
param.requires_grad = False
self.ekf_module = IMUKalmanFilter()
def get_imu_noise_covar(self):
covar = 10 ** (par.imu_noise_covar_beta * torch.tanh(par.imu_noise_covar_gamma * self.imu_noise_covar_weights(
torch.ones(1, device=self.imu_noise_covar_weights.weight.device))))
imu_noise_covar_diag = torch.tensor(par.imu_noise_covar_diag, dtype=torch.float32,
device=self.imu_noise_covar_weights.weight.device).repeat_interleave(3) * \
torch.stack([covar[0], covar[0], covar[0],
covar[1], covar[1], covar[1],
covar[2], covar[2], covar[2],
covar[3], covar[3], covar[3]])
return torch.diag(imu_noise_covar_diag)
def forward(self, images, imu_data, prev_lstm_states, prev_pose, prev_state, prev_covar, T_imu_cam):
vis_meas_covar_scale = torch.ones(6, device=images.device)
vis_meas_covar_scale[0:3] = vis_meas_covar_scale[0:3] * par.k4
imu_noise_covar = self.get_imu_noise_covar()
if prev_covar is None:
prev_covar = torch.diag(self.init_covar_diag_sqrt * self.init_covar_diag_sqrt +
par.init_covar_diag_eps).repeat(images.shape[0], 1, 1)
encoded_images = self.vo_module.encode_image(images)
num_timesteps = images.size(1) - 1 # equals to imu_data.size(1) - 1
poses_over_timesteps = [prev_pose]
states_over_timesteps = [prev_state]
covars_over_timesteps = [prev_covar]
vis_meas_over_timesteps = []
vis_meas_covar_over_timesteps = []
lstm_states = prev_lstm_states
for k in range(0, num_timesteps):
# ekf predict
pred_states, pred_covars = self.ekf_module.predict(imu_data[:, k], imu_noise_covar,
states_over_timesteps[-1], covars_over_timesteps[-1])
if par.hybrid_recurrency and par.enable_ekf:
# concatenate the predicted states and covar with the encoded images to feed into LSTM
last_pred_state_so3 = IMUKalmanFilter.state_to_so3(pred_states[-1])
last_pred_covar_flattened = pred_covars[-1].view(-1, IMUKalmanFilter.STATE_VECTOR_DIM ** 2)
feature_vector = torch.cat([last_pred_state_so3, last_pred_covar_flattened, encoded_images[:, k]], -1)
else:
feature_vector = encoded_images[:, k]
# get vis measurement
vis_meas_and_covar, lstm_states = self.vo_module.forward_one_ts(feature_vector, lstm_states)
vis_meas = vis_meas_and_covar[:, 0:6]
# process vis meas covar
if par.vis_meas_covar_use_fixed:
vis_meas_covar_diag = torch.tensor(par.vis_meas_fixed_covar,
dtype=torch.float32, device=vis_meas.device)
vis_meas_covar_diag = vis_meas_covar_diag * vis_meas_covar_scale
vis_meas_covar_diag = vis_meas_covar_diag.repeat(vis_meas.shape[0], vis_meas.shape[1], 1)
else:
vis_meas_covar_diag = par.vis_meas_covar_init_guess * \
10 ** (par.vis_meas_covar_beta *
torch.tanh(par.vis_meas_covar_gamma * vis_meas_and_covar[:, 6:12]))
vis_meas_covar_scaled = torch.diag_embed(vis_meas_covar_diag / vis_meas_covar_scale.view(1, 6))
vis_meas_covar = torch.diag_embed(vis_meas_covar_diag)
# ekf correct
est_state, est_covar = self.ekf_module.update(pred_states[-1], pred_covars[-1],
vis_meas.unsqueeze(-1),
vis_meas_covar_scaled,
T_imu_cam)
new_pose, new_state, new_covar = self.ekf_module.composition(poses_over_timesteps[-1],
est_state, est_covar)
poses_over_timesteps.append(new_pose)
states_over_timesteps.append(new_state)
covars_over_timesteps.append(new_covar)
vis_meas_over_timesteps.append(vis_meas)
vis_meas_covar_over_timesteps.append(vis_meas_covar)
return torch.stack(vis_meas_over_timesteps, 1), \
torch.stack(vis_meas_covar_over_timesteps, 1), \
lstm_states, \
torch.stack(poses_over_timesteps, 1), \
torch.stack(states_over_timesteps, 1), \
torch.stack(covars_over_timesteps, 1)